#define MYNN_DBG_LVL 3000
!WRF:MODEL_LAYER:PHYSICS
!
! translated from NN f77 to F90 and put into WRF by Mariusz Pagowski
! NOAA/GSD & CIRA/CSU, Feb 2008
! changes to original code:
! 1. code is 1d (in z)
! 2. no advection of TKE, covariances and variances
! 3. Cranck-Nicholson replaced with the implicit scheme
! 4. removed terrain dependent grid since input in WRF in actual
! distances in z[m]
! 5. cosmetic changes to adhere to WRF standard (remove common blocks,
! intent etc)
!-------------------------------------------------------------------
!Modifications implemented by Joseph Olson NOAA/GSD/AMB - CU/CIRES
! (approved by Mikio Nakanishi or under consideration or do not
! significantly alter the general behavior of the MYNN as documented.):
!
! 1. Addition of BouLac mixing length in the free atmosphere.
! 2. Changed the turbulent mixing length to be integrated from the
! surface to the top of the BL + a transition layer depth.
! 3. v3.4.1: Option to use Kitamura/Canuto modification which removes
! the critical Richardson number and negative TKE (default).
! Hybrid PBL height diagnostic, which blends a theta-v-based
! definition in neutral/convective BL and a TKE-based definition
! in stable conditions.
! TKE budget output option (bl_mynn_tkebudget)
! 4. v3.5.0: TKE advection option (bl_mynn_tkeadvect)
! 5. v3.5.1: Fog deposition related changes.
! 6. v3.6.0: Removed fog deposition from the calculation of tendencies
! Added mixing of qc, qi, qni
! Added output for wstar, delta, TKE_PBL, & KPBL for correct
! coupling to shcu schemes
! 7. v3.8.0: Added subgrid scale cloud output for coupling to radiation
! schemes (activated by setting icloud_bl =1 in phys namelist).
! Added WRF_DEBUG prints (at level 3000)
! Added Tripoli and Cotton (1981) correction.
! Added namelist option bl_mynn_cloudmix to test effect of mixing
! cloud species (default = 1: on).
! Added mass-flux option (bl_mynn_edmf, = 1 for StEM, 2 for TEMF).
! This option is off by default (=0).
! Related (hidden) options:
! bl_mynn_edmf_mom = 1 : activate momentum transport in MF scheme
! bl_mynn_edmf_tke = 1 : activate TKE transport in MF scheme
! bl_mynn_edmf_part= 1 : activate areal partitioning of ED & MF
! Added mixing length option (bl_mynn_mixlength, see notes below)
! Added more sophisticated saturation checks, following Thompson scheme
! Added new cloud PDF option (bl_mynn_cloudpdf = 2) from Chaboureau
! and Bechtold (2002, JAS, with mods)
! Added capability to mix chemical species when env variable
! WRF_CHEM = 1, thanks to Wayne Angevine.
! Added scale-aware mixing length, following Junshi Ito's work
! Ito et al. (2015, BLM).
! 8. v3.9.0 Improvement to the mass-flux scheme (dynamic number of plumes,
! better plume/cloud depth, significant speed up, better cloud
! fraction).
! Added Stochastic Parameter Perturbation (SPP) implementation.
! Many miscellaneous tweaks to the mixing lengths and stratus
! component of the subgrid clouds.
!
! For changes 1, 3, and 6, see "JOE's mods" below:
!-------------------------------------------------------------------
MODULE module_bl_mynn 5
USE module_model_constants
, only: &
&karman, g, p1000mb, &
&cp, r_d, r_v, rcp, xlv, xlf, xls, &
&svp1, svp2, svp3, svpt0, ep_1, ep_2, rvovrd, &
&cpv, cliq, cice
USE module_state_description
, only: param_first_scalar, &
&p_qc, p_qr, p_qi, p_qs, p_qg, p_qnc, p_qni
USE module_wrf_error
!-------------------------------------------------------------------
IMPLICIT NONE
!-------------------------------------------------------------------
! The parameters below depend on stability functions of module_sf_mynn.
REAL, PARAMETER :: cphm_st=5.0, cphm_unst=16.0, &
cphh_st=5.0, cphh_unst=16.0
REAL, PARAMETER :: xlvcp=xlv/cp, xlscp=(xlv+xlf)/cp, ev=xlv, rd=r_d, &
&rk=cp/rd, svp11=svp1*1.e3, p608=ep_1, ep_3=1.-ep_2
REAL, PARAMETER :: tref=300.0 ! reference temperature (K)
REAL, PARAMETER :: TKmin=253.0 ! for total water conversion, Tripoli and Cotton (1981)
REAL, PARAMETER :: tv0=p608*tref, tv1=(1.+p608)*tref, gtr=g/tref
! Closure constants
REAL, PARAMETER :: &
&vk = karman, &
&pr = 0.74, &
&g1 = 0.235, & ! NN2009 = 0.235
&b1 = 24.0, &
&b2 = 15.0, & ! CKmod NN2009
&c2 = 0.729, & ! 0.729, & !0.75, &
&c3 = 0.340, & ! 0.340, & !0.352, &
&c4 = 0.0, &
&c5 = 0.2, &
&a1 = b1*( 1.0-3.0*g1 )/6.0, &
! &c1 = g1 -1.0/( 3.0*a1*b1**(1.0/3.0) ), &
&c1 = g1 -1.0/( 3.0*a1*2.88449914061481660), &
&a2 = a1*( g1-c1 )/( g1*pr ), &
&g2 = b2/b1*( 1.0-c3 ) +2.0*a1/b1*( 3.0-2.0*c2 )
REAL, PARAMETER :: &
&cc2 = 1.0-c2, &
&cc3 = 1.0-c3, &
&e1c = 3.0*a2*b2*cc3, &
&e2c = 9.0*a1*a2*cc2, &
&e3c = 9.0*a2*a2*cc2*( 1.0-c5 ), &
&e4c = 12.0*a1*a2*cc2, &
&e5c = 6.0*a1*a1
! Constants for min tke in elt integration (qmin), max z/L in els (zmax),
! and factor for eddy viscosity for TKE (Kq = Sqfac*Km):
REAL, PARAMETER :: qmin=0.0, zmax=1.0, Sqfac=3.0
! Note that the following mixing-length constants are now specified in mym_length
! &cns=3.5, alp1=0.23, alp2=0.3, alp3=3.0, alp4=10.0, alp5=0.4
! Constants for gravitational settling
! REAL, PARAMETER :: gno=1.e6/(1.e8)**(2./3.), gpw=5./3., qcgmin=1.e-8
REAL, PARAMETER :: gno=1.0 !original value seems too agressive: 4.64158883361278196
REAL, PARAMETER :: gpw=5./3., qcgmin=1.e-8, qkemin=1.e-12
! Constants for cloud PDF (mym_condensation)
REAL, PARAMETER :: rr2=0.7071068, rrp=0.3989423
! 'parameters' for Poisson distribution (StEM EDMF scheme)
REAL, PARAMETER :: zero = 0.0, half = 0.5, one = 1.0, two = 2.0
!Use Canuto/Kitamura mod (remove Ric and negative TKE) (1:yes, 0:no)
!For more info, see Canuto et al. (2008 JAS) and Kitamura (Journal of the
!Meteorological Society of Japan, Vol. 88, No. 5, pp. 857-864, 2010).
!Note that this change required further modification of other parameters
!above (c2, c3). If you want to remove this option, set c2 and c3 constants
!(above) back to NN2009 values (see commented out lines next to the
!parameters above). This only removes the negative TKE problem
!but does not necessarily improve performance - neutral impact.
REAL, PARAMETER :: CKmod=1.
!Use Ito et al. (2015, BLM) scale-aware (0: no, 1: yes). Note that this also has impacts
!on the cloud PDF and mass-flux scheme, using Honnert et al. (2011) similarity function
!for TKE in the upper PBL/cloud layer.
REAL, PARAMETER :: scaleaware=1.
!Temporary switch to deactivate the mixing of chemical species (already done when WRF_CHEM = 1)
INTEGER, PARAMETER :: bl_mynn_mixchem = 0
! JAYMES-
! Constants used for empirical calculations of saturation
! vapor pressures (in function "esat") and saturation mixing ratios
! (in function "qsat"), reproduced from module_mp_thompson.F,
! v3.6
REAL, PARAMETER:: J0= .611583699E03
REAL, PARAMETER:: J1= .444606896E02
REAL, PARAMETER:: J2= .143177157E01
REAL, PARAMETER:: J3= .264224321E-1
REAL, PARAMETER:: J4= .299291081E-3
REAL, PARAMETER:: J5= .203154182E-5
REAL, PARAMETER:: J6= .702620698E-8
REAL, PARAMETER:: J7= .379534310E-11
REAL, PARAMETER:: J8=-.321582393E-13
REAL, PARAMETER:: K0= .609868993E03
REAL, PARAMETER:: K1= .499320233E02
REAL, PARAMETER:: K2= .184672631E01
REAL, PARAMETER:: K3= .402737184E-1
REAL, PARAMETER:: K4= .565392987E-3
REAL, PARAMETER:: K5= .521693933E-5
REAL, PARAMETER:: K6= .307839583E-7
REAL, PARAMETER:: K7= .105785160E-9
REAL, PARAMETER:: K8= .161444444E-12
! end-
!JOE & JAYMES'S mods
!
! Mixing Length Options
! specifed through namelist: bl_mynn_mixlength
! added: 16 Apr 2015
!
! 0: Uses original MYNN mixing length formulation (except elt is calculated from
! a 10-km vertical integration). No scale-awareness is applied to the master
! mixing length (el), regardless of "scaleaware" setting.
!
! 1 (*DEFAULT*): Instead of (0), uses BouLac mixing length in free atmosphere.
! This helps remove excessively large mixing in unstable layers aloft. Scale-
! awareness in dx is available via the "scaleaware" setting. As of Apr 2015,
! this mixing length formulation option is used in the ESRL RAP/HRRR configuration.
!
! 2: As in (1), but elb is lengthened using separate cloud mixing length functions
! for statically stable and unstable regimes. This elb adjustment is only
! possible for nonzero cloud fractions, such that cloud-free cells are treated
! as in (1), but BouLac calculation is used more sparingly - when elb > 500 m.
! This is to reduce the computational expense that comes with the BouLac calculation.
! Also, This option is scale-aware in dx if "scaleaware" = 1. (Following Ito et al. 2015).
!
!JOE & JAYMES- end
INTEGER :: mynn_level
CHARACTER*128 :: mynn_message
INTEGER, PARAMETER :: kdebug=27
CONTAINS
! **********************************************************************
! * An improved Mellor-Yamada turbulence closure model *
! * *
! * Aug/2005 M. Nakanishi (N.D.A) *
! * Modified: Dec/2005 M. Nakanishi (N.D.A) *
! * naka@nda.ac.jp *
! * *
! * Contents: *
! * 1. mym_initialize (to be called once initially) *
! * gives the closure constants and initializes the turbulent *
! * quantities. *
! * (2) mym_level2 (called in the other subroutines) *
! * calculates the stability functions at Level 2. *
! * (3) mym_length (called in the other subroutines) *
! * calculates the master length scale. *
! * 4. mym_turbulence *
! * calculates the vertical diffusivity coefficients and the *
! * production terms for the turbulent quantities. *
! * 5. mym_predict *
! * predicts the turbulent quantities at the next step. *
! * 6. mym_condensation *
! * determines the liquid water content and the cloud fraction *
! * diagnostically. *
! * *
! * call mym_initialize *
! * | *
! * |<----------------+ *
! * | | *
! * call mym_condensation | *
! * call mym_turbulence | *
! * call mym_predict | *
! * | | *
! * |-----------------+ *
! * | *
! * end *
! * *
! * Variables worthy of special mention: *
! * tref : Reference temperature *
! * thl : Liquid water potential temperature *
! * qw : Total water (water vapor+liquid water) content *
! * ql : Liquid water content *
! * vt, vq : Functions for computing the buoyancy flux *
! * *
! * If the water contents are unnecessary, e.g., in the case of *
! * ocean models, thl is the potential temperature and qw, ql, vt *
! * and vq are all zero. *
! * *
! * Grid arrangement: *
! * k+1 +---------+ *
! * | | i = 1 - nx *
! * (k) | * | j = 1 - ny *
! * | | k = 1 - nz *
! * k +---------+ *
! * i (i) i+1 *
! * *
! * All the predicted variables are defined at the center (*) of *
! * the grid boxes. The diffusivity coefficients are, however, *
! * defined on the walls of the grid boxes. *
! * # Upper boundary values are given at k=nz. *
! * *
! * References: *
! * 1. Nakanishi, M., 2001: *
! * Boundary-Layer Meteor., 99, 349-378. *
! * 2. Nakanishi, M. and H. Niino, 2004: *
! * Boundary-Layer Meteor., 112, 1-31. *
! * 3. Nakanishi, M. and H. Niino, 2006: *
! * Boundary-Layer Meteor., (in press). *
! * 4. Nakanishi, M. and H. Niino, 2009: *
! * Jour. Meteor. Soc. Japan, 87, 895-912. *
! **********************************************************************
!
! SUBROUTINE mym_initialize:
!
! Input variables:
! iniflag : <>0; turbulent quantities will be initialized
! = 0; turbulent quantities have been already
! given, i.e., they will not be initialized
! nx, ny, nz : Dimension sizes of the
! x, y and z directions, respectively
! tref : Reference temperature (K)
! dz(nz) : Vertical grid spacings (m)
! # dz(nz)=dz(nz-1)
! zw(nz+1) : Heights of the walls of the grid boxes (m)
! # zw(1)=0.0 and zw(k)=zw(k-1)+dz(k-1)
! h(nx,ny) : G^(1/2) in the terrain-following coordinate
! # h=1-zg/zt, where zg is the height of the
! terrain and zt the top of the model domain
! pi0(nx,my,nz) : Exner function at zw*h+zg (J/kg K)
! defined by c_p*( p_basic/1000hPa )^kappa
! This is usually computed by integrating
! d(pi0)/dz = -h*g/tref.
! rmo(nx,ny) : Inverse of the Obukhov length (m^(-1))
! flt, flq(nx,ny) : Turbulent fluxes of sensible and latent heat,
! respectively, e.g., flt=-u_*Theta_* (K m/s)
!! flt - liquid water potential temperature surface flux
!! flq - total water flux surface flux
! ust(nx,ny) : Friction velocity (m/s)
! pmz(nx,ny) : phi_m-zeta at z1*h+z0, where z1 (=0.5*dz(1))
! is the first grid point above the surafce, z0
! the roughness length and zeta=(z1*h+z0)*rmo
! phh(nx,ny) : phi_h at z1*h+z0
! u, v(nx,nz,ny): Components of the horizontal wind (m/s)
! thl(nx,nz,ny) : Liquid water potential temperature
! (K)
! qw(nx,nz,ny) : Total water content Q_w (kg/kg)
!
! Output variables:
! ql(nx,nz,ny) : Liquid water content (kg/kg)
! v?(nx,nz,ny) : Functions for computing the buoyancy flux
! qke(nx,nz,ny) : Twice the turbulent kinetic energy q^2
! (m^2/s^2)
! tsq(nx,nz,ny) : Variance of Theta_l (K^2)
! qsq(nx,nz,ny) : Variance of Q_w
! cov(nx,nz,ny) : Covariance of Theta_l and Q_w (K)
! el(nx,nz,ny) : Master length scale L (m)
! defined on the walls of the grid boxes
!
! Work arrays: see subroutine mym_level2
! pd?(nx,nz,ny) : Half of the production terms at Level 2
! defined on the walls of the grid boxes
! qkw(nx,nz,ny) : q on the walls of the grid boxes (m/s)
!
! # As to dtl, ...gh, see subroutine mym_turbulence.
!
!-------------------------------------------------------------------
SUBROUTINE mym_initialize ( & 1
& kts,kte, &
& dz, zw, &
& u, v, thl, qw, &
! & ust, rmo, pmz, phh, flt, flq, &
& zi, theta, sh, &
& ust, rmo, el, &
& Qke, Tsq, Qsq, Cov, Psig_bl, cldfra_bl1D, &
& bl_mynn_mixlength, &
& edmf_a1,edmf_qc1,bl_mynn_edmf, &
& spp_pbl,rstoch_col)
!
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: kts,kte
INTEGER, INTENT(IN) :: bl_mynn_mixlength,bl_mynn_edmf
! REAL, INTENT(IN) :: ust, rmo, pmz, phh, flt, flq
REAL, INTENT(IN) :: ust, rmo, Psig_bl
REAL, DIMENSION(kts:kte), INTENT(in) :: dz
REAL, DIMENSION(kts:kte+1), INTENT(in) :: zw
REAL, DIMENSION(kts:kte), INTENT(in) :: u,v,thl,qw,cldfra_bl1D,&
edmf_a1,edmf_qc1
REAL, DIMENSION(kts:kte), INTENT(out) :: tsq,qsq,cov
REAL, DIMENSION(kts:kte), INTENT(inout) :: el,qke
REAL, DIMENSION(kts:kte) :: &
&ql,pdk,pdt,pdq,pdc,dtl,dqw,dtv,&
&gm,gh,sm,sh,qkw,vt,vq
INTEGER :: k,l,lmax
REAL :: phm,vkz,elq,elv,b1l,b2l,pmz=1.,phh=1.,flt=0.,flq=0.,tmpq
REAL :: zi
REAL, DIMENSION(kts:kte) :: theta
REAL, DIMENSION(kts:kte) :: rstoch_col
INTEGER ::spp_pbl
! ** At first ql, vt and vq are set to zero. **
DO k = kts,kte
ql(k) = 0.0
vt(k) = 0.0
vq(k) = 0.0
END DO
!
CALL mym_level2
( kts,kte,&
& dz, &
& u, v, thl, qw, &
& ql, vt, vq, &
& dtl, dqw, dtv, gm, gh, sm, sh )
!
! ** Preliminary setting **
el (kts) = 0.0
qke(kts) = ust**2 * ( b1*pmz )**(2.0/3.0)
!
phm = phh*b2 / ( b1*pmz )**(1.0/3.0)
tsq(kts) = phm*( flt/ust )**2
qsq(kts) = phm*( flq/ust )**2
cov(kts) = phm*( flt/ust )*( flq/ust )
!
DO k = kts+1,kte
vkz = vk*zw(k)
el (k) = vkz/( 1.0 + vkz/100.0 )
qke(k) = 0.0
!
tsq(k) = 0.0
qsq(k) = 0.0
cov(k) = 0.0
END DO
!
! ** Initialization with an iterative manner **
! ** lmax is the iteration count. This is arbitrary. **
lmax = 5
!
DO l = 1,lmax
!
CALL mym_length
( &
& kts,kte, &
& dz, zw, &
& rmo, flt, flq, &
& vt, vq, &
& qke, &
& dtv, &
& el, &
& zi,theta, &
& qkw,Psig_bl,cldfra_bl1D,bl_mynn_mixlength,&
& edmf_a1,edmf_qc1,bl_mynn_edmf,&
& spp_pbl,rstoch_col)
!
DO k = kts+1,kte
elq = el(k)*qkw(k)
pdk(k) = elq*( sm(k)*gm (k)+&
&sh(k)*gh (k) )
pdt(k) = elq* sh(k)*dtl(k)**2
pdq(k) = elq* sh(k)*dqw(k)**2
pdc(k) = elq* sh(k)*dtl(k)*dqw(k)
END DO
!
! ** Strictly, vkz*h(i,j) -> vk*( 0.5*dz(1)*h(i,j)+z0 ) **
vkz = vk*0.5*dz(kts)
!
elv = 0.5*( el(kts+1)+el(kts) ) / vkz
qke(kts) = ust**2 * ( b1*pmz*elv )**(2.0/3.0)
!
phm = phh*b2 / ( b1*pmz/elv**2 )**(1.0/3.0)
tsq(kts) = phm*( flt/ust )**2
qsq(kts) = phm*( flq/ust )**2
cov(kts) = phm*( flt/ust )*( flq/ust )
!
DO k = kts+1,kte-1
b1l = b1*0.25*( el(k+1)+el(k) )
tmpq=MAX(b1l*( pdk(k+1)+pdk(k) ),qkemin)
! PRINT *,'tmpqqqqq',tmpq,pdk(k+1),pdk(k)
qke(k) = tmpq**(2.0/3.0)
!
IF ( qke(k) .LE. 0.0 ) THEN
b2l = 0.0
ELSE
b2l = b2*( b1l/b1 ) / SQRT( qke(k) )
END IF
!
tsq(k) = b2l*( pdt(k+1)+pdt(k) )
qsq(k) = b2l*( pdq(k+1)+pdq(k) )
cov(k) = b2l*( pdc(k+1)+pdc(k) )
END DO
!
END DO
!! qke(kts)=qke(kts+1)
!! tsq(kts)=tsq(kts+1)
!! qsq(kts)=qsq(kts+1)
!! cov(kts)=cov(kts+1)
qke(kte)=qke(kte-1)
tsq(kte)=tsq(kte-1)
qsq(kte)=qsq(kte-1)
cov(kte)=cov(kte-1)
!
! RETURN
END SUBROUTINE mym_initialize
!
! ==================================================================
! SUBROUTINE mym_level2:
!
! Input variables: see subroutine mym_initialize
!
! Output variables:
! dtl(nx,nz,ny) : Vertical gradient of Theta_l (K/m)
! dqw(nx,nz,ny) : Vertical gradient of Q_w
! dtv(nx,nz,ny) : Vertical gradient of Theta_V (K/m)
! gm (nx,nz,ny) : G_M divided by L^2/q^2 (s^(-2))
! gh (nx,nz,ny) : G_H divided by L^2/q^2 (s^(-2))
! sm (nx,nz,ny) : Stability function for momentum, at Level 2
! sh (nx,nz,ny) : Stability function for heat, at Level 2
!
! These are defined on the walls of the grid boxes.
!
SUBROUTINE mym_level2 (kts,kte,& 2
& dz, &
& u, v, thl, qw, &
& ql, vt, vq, &
& dtl, dqw, dtv, gm, gh, sm, sh )
!
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: kts,kte
REAL, DIMENSION(kts:kte), INTENT(in) :: dz
REAL, DIMENSION(kts:kte), INTENT(in) :: u,v,thl,qw,ql,vt,vq
REAL, DIMENSION(kts:kte), INTENT(out) :: &
&dtl,dqw,dtv,gm,gh,sm,sh
INTEGER :: k
REAL :: rfc,f1,f2,rf1,rf2,smc,shc,&
&ri1,ri2,ri3,ri4,duz,dtz,dqz,vtt,vqq,dtq,dzk,afk,abk,ri,rf
!JOE-Canuto/Kitamura mod
REAL :: a2den
!JOE-end
! ev = 2.5e6
! tv0 = 0.61*tref
! tv1 = 1.61*tref
! gtr = 9.81/tref
!
rfc = g1/( g1+g2 )
f1 = b1*( g1-c1 ) +3.0*a2*( 1.0 -c2 )*( 1.0-c5 ) &
& +2.0*a1*( 3.0-2.0*c2 )
f2 = b1*( g1+g2 ) -3.0*a1*( 1.0 -c2 )
rf1 = b1*( g1-c1 )/f1
rf2 = b1* g1 /f2
smc = a1 /a2* f1/f2
shc = 3.0*a2*( g1+g2 )
!
ri1 = 0.5/smc
ri2 = rf1*smc
ri3 = 4.0*rf2*smc -2.0*ri2
ri4 = ri2**2
!
DO k = kts+1,kte
dzk = 0.5 *( dz(k)+dz(k-1) )
afk = dz(k)/( dz(k)+dz(k-1) )
abk = 1.0 -afk
duz = ( u(k)-u(k-1) )**2 +( v(k)-v(k-1) )**2
duz = duz /dzk**2
dtz = ( thl(k)-thl(k-1) )/( dzk )
dqz = ( qw(k)-qw(k-1) )/( dzk )
!
vtt = 1.0 +vt(k)*abk +vt(k-1)*afk ! Beta-theta in NN09, Eq. 39
vqq = tv0 +vq(k)*abk +vq(k-1)*afk ! Beta-q
dtq = vtt*dtz +vqq*dqz
!
dtl(k) = dtz
dqw(k) = dqz
dtv(k) = dtq
!? dtv(i,j,k) = dtz +tv0*dqz
!? : +( ev/pi0(i,j,k)-tv1 )
!? : *( ql(i,j,k)-ql(i,j,k-1) )/( dzk*h(i,j) )
!
gm (k) = duz
gh (k) = -dtq*gtr
!
! ** Gradient Richardson number **
ri = -gh(k)/MAX( duz, 1.0e-10 )
!JOE-Canuto/Kitamura mod
IF (CKmod .eq. 1) THEN
a2den = 1. + MAX(ri,0.0)
ELSE
a2den = 1. + 0.0
ENDIF
rfc = g1/( g1+g2 )
f1 = b1*( g1-c1 ) +3.0*(a2/a2den)*( 1.0 -c2 )*( 1.0-c5 ) &
& +2.0*a1*( 3.0-2.0*c2 )
f2 = b1*( g1+g2 ) -3.0*a1*( 1.0 -c2 )
rf1 = b1*( g1-c1 )/f1
rf2 = b1* g1 /f2
smc = a1 /(a2/a2den)* f1/f2
shc = 3.0*(a2/a2den)*( g1+g2 )
ri1 = 0.5/smc
ri2 = rf1*smc
ri3 = 4.0*rf2*smc -2.0*ri2
ri4 = ri2**2
!JOE-end
! ** Flux Richardson number **
rf = MIN( ri1*( ri+ri2-SQRT(ri**2-ri3*ri+ri4) ), rfc )
!
sh (k) = shc*( rfc-rf )/( 1.0-rf )
sm (k) = smc*( rf1-rf )/( rf2-rf ) * sh(k)
END DO
!
RETURN
END SUBROUTINE mym_level2
! ==================================================================
! SUBROUTINE mym_length:
!
! Input variables: see subroutine mym_initialize
!
! Output variables: see subroutine mym_initialize
!
! Work arrays:
! elt(nx,ny) : Length scale depending on the PBL depth (m)
! vsc(nx,ny) : Velocity scale q_c (m/s)
! at first, used for computing elt
!
! NOTE: the mixing lengths are meant to be calculated at the full-
! sigmal levels (or interfaces beween the model layers).
!
SUBROUTINE mym_length ( & 2
& kts,kte, &
& dz, zw, &
& rmo, flt, flq, &
& vt, vq, &
& qke, &
& dtv, &
& el, &
& zi,theta, &
& qkw,Psig_bl,cldfra_bl1D,bl_mynn_mixlength,&
& edmf_a1,edmf_qc1,bl_mynn_edmf,&
& spp_pbl,rstoch_col)
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: kts,kte
INTEGER, INTENT(IN) :: bl_mynn_mixlength,bl_mynn_edmf
REAL, DIMENSION(kts:kte), INTENT(in) :: dz
REAL, DIMENSION(kts:kte+1), INTENT(in) :: zw
REAL, INTENT(in) :: rmo,flt,flq,Psig_bl
REAL, DIMENSION(kts:kte), INTENT(IN) :: qke,vt,vq,cldfra_bl1D,&
edmf_a1,edmf_qc1
REAL, DIMENSION(kts:kte), INTENT(out) :: qkw, el
REAL, DIMENSION(kts:kte), INTENT(in) :: dtv
REAL :: elt,vsc
REAL, DIMENSION(kts:kte), INTENT(IN) :: theta
REAL, DIMENSION(kts:kte) :: qtke,elBLmin,elBLavg,thetaw
REAL :: wt,wt2,zi,zi2,h1,h2,hs,elBLmin0,elBLavg0
! THE FOLLOWING CONSTANTS ARE IMPORTANT FOR REGULATING THE
! MIXING LENGTHS:
REAL :: cns, & ! for surface layer (els) in stable conditions
alp1, & ! for turbulent length scale (elt)
alp2, & ! for buoyancy length scale (elb)
alp3, & ! for buoyancy enhancement factor of elb
alp4, & ! for surface layer (els) in unstable conditions
alp5 ! for BouLac mixing length
!THE FOLLOWING LIMITS DO NOT DIRECTLY AFFECT THE ACTUAL PBLH.
!THEY ONLY IMPOSE LIMITS ON THE CALCULATION OF THE MIXING LENGTH
!SCALES SO THAT THE BOULAC MIXING LENGTH (IN FREE ATMOS) DOES
!NOT ENCROACH UPON THE BOUNDARY LAYER MIXING LENGTH (els, elb & elt).
REAL, PARAMETER :: minzi = 300. !min mixed-layer height
REAL, PARAMETER :: maxdz = 750. !max (half) transition layer depth
!=0.3*2500 m PBLH, so the transition
!layer stops growing for PBLHs > 2.5 km.
REAL, PARAMETER :: mindz = 300. !300 !min (half) transition layer depth
!SURFACE LAYER LENGTH SCALE MODS TO REDUCE IMPACT IN UPPER BOUNDARY LAYER
REAL, PARAMETER :: ZSLH = 100. ! Max height correlated to surface conditions (m)
REAL, PARAMETER :: CSL = 2. ! CSL = constant of proportionality to L O(1)
REAL :: z_m
INTEGER :: i,j,k
REAL :: afk,abk,zwk,zwk1,dzk,qdz,vflx,bv,tau_cloud,elb,els,els1,elf, &
& el_stab,el_unstab,el_mf,el_stab_mf,elb_mf,PBLH_PLUS_ENT
INTEGER, INTENT(IN) :: spp_pbl
REAL, DIMENSION(kts:kte), INTENT(in) :: rstoch_col
IF ( bl_mynn_mixlength .EQ. 0 ) THEN
cns = 2.7
alp1 = 0.23
alp2 = 1.0
alp3 = 5.0
alp4 = 100.
alp5 = 0.4
ELSEIF ( bl_mynn_mixlength .EQ. 1 ) THEN
cns = 2.3
alp1 = 0.23
alp2 = 0.6
alp3 = 3.0
alp4 = 20.
alp5 = 0.4
ELSEIF ( bl_mynn_mixlength .GE. 2 ) THEN
cns = 3.5
alp1 = 0.23
alp2 = 0.25
alp3 = 3.0
alp4 = 10.
alp5 = 0.3
ENDIF
! tv0 = 0.61*tref
! gtr = 9.81/tref
!
! Impose limits on the height integration for elt as well
! as the transition layer depth
IF ( bl_mynn_mixlength .EQ. 0 ) THEN
zi2=10000. !originally integrated to model top, not just 10 km.
ELSE
zi2=MAX(zi,minzi)
ENDIF
h1=MAX(0.3*zi2,mindz)
h1=MIN(h1,maxdz) ! 1/2 transition layer depth
h2=h1/2.0 ! 1/4 transition layer depth
qtke(kts)=MAX(qke(kts)/2.,0.01) !tke at full sigma levels
thetaw(kts)=theta
(kts) !theta at full-sigma levels
qkw(kts) = SQRT(MAX(qke(kts),1.0e-10))
DO k = kts+1,kte
afk = dz(k)/( dz(k)+dz(k-1) )
abk = 1.0 -afk
qkw(k) = SQRT(MAX(qke(k)*abk+qke(k-1)*afk,1.0e-3))
qtke(k) = (qkw(k)**2.)/2. ! q -> TKE
thetaw(k)= theta
(k)*abk + theta(k-1)*afk
END DO
!
elt = 1.0e-5
vsc = 1.0e-5
!
! ** Strictly, zwk*h(i,j) -> ( zwk*h(i,j)+z0 ) **
! Only integrate to top of PBL (+ transition/entrainment layer),
! since TKE aloft is not relevant.
!
IF ( bl_mynn_mixlength .EQ. 2 ) THEN
PBLH_PLUS_ENT = MAX(zi, 100.)
ELSE
PBLH_PLUS_ENT = zi2+h1
ENDIF
k = kts+1
zwk = zw(k)
DO WHILE (zwk .LE. PBLH_PLUS_ENT)
dzk = 0.5*( dz(k)+dz(k-1) )
qdz = MAX( qkw(k)-qmin, 0.03 )*dzk
elt = elt +qdz*zwk
vsc = vsc +qdz
k = k+1
zwk = zw(k)
END DO
!
elt = MAX(alp1*elt/vsc, 10.)
vflx = ( vt(kts)+1.0 )*flt +( vq(kts)+tv0 )*flq
vsc = ( gtr*elt*MAX( vflx, 0.0 ) )**(1.0/3.0)
!
! ** Strictly, el(i,j,1) is not zero. **
el(kts) = 0.0
!
IF ( bl_mynn_mixlength .EQ. 1 ) THEN
! COMPUTE BouLac mixing length
CALL boulac_length
(kts,kte,zw,dz,qtke,thetaw,elBLmin,elBLavg)
ENDIF
DO k = kts+1,kte
zwk = zw(k) !full-sigma levels
IF (k .EQ. kts+1) zwk1=zwk
! ** Length scale limited by the buoyancy effect **
IF ( dtv(k) .GT. 0.0 ) THEN
bv = SQRT( gtr*dtv(k) )
IF ( bl_mynn_mixlength .EQ. 0 ) THEN ! use default elb formulation
elb = alp2*qkw(k) / bv &
& *( 1.0 + alp3/alp2*&
&SQRT( vsc/( bv*elt ) ) )
elf = alp2 * qkw(k)/bv
ELSE IF ( bl_mynn_mixlength .EQ. 1 ) THEN ! use default elb
elb = alp2*qkw(k) / bv & ! formulation,
& *( 1.0 + alp3/alp2*& ! except keep
&SQRT( vsc/( bv*elt ) ) ) ! elb bounded by
elb = MIN(elb, zwk) ! zwk
elf = alp2 * qkw(k)/bv
ELSE IF ( bl_mynn_mixlength .GE. 2 ) THEN ! use new elb formulation
elb_mf = alp2*qkw(k) / bv &
& *( 1.0 + alp3/alp2*&
&SQRT( vsc/( bv*elt ) ) )
elb = MIN(alp2*qkw(k)/bv, zwk)
elf = elb
IF (zwk > zi .AND. elf > 500.) THEN
! COMPUTE BouLac mixing length
CALL boulac_length0
(k,kts,kte,zw,dz,qtke,thetaw,elBLmin0,elBLavg0)
elf = alp5*elBLavg0
ENDIF
END IF
ELSE
IF ( bl_mynn_mixlength .LE. 1 ) THEN ! use default elb formulation
elb = 1.0e10
elf = elb
ELSE IF ( bl_mynn_mixlength .GE. 2 ) THEN
! use version in development for RAP/HRRR 2016
! JAYMES-
! tau_cloud is an eddy turnover timescale;
! see Teixeira and Cheinet (2004), Eq. 1, and
! Cheinet and Teixeira (2003), Eq. 7. The
! coefficient 0.5 is tuneable. Expression in
! denominator is identical to vsc (a convective
! velocity scale), except that elt is relpaced
! by zi, and zero is replaced by 1.0e-4 to
! prevent division by zero.
tau_cloud = MIN(MAX(0.5*zi/((gtr*zi*MAX(flt,1.0e-4))**(1.0/3.0)),10.),100.)
!minimize influence of surface heat flux on tau far away from the PBLH.
wt=.5*TANH((zwk - (zi2+h1))/h2) + .5
tau_cloud = tau_cloud*(1.-wt) + 50.*wt
elb = MIN(tau_cloud*SQRT(MIN(qtke(k),20.)), zwk)
elf = elb
elb_mf = elb
IF (zwk > zi .AND. elf > 500.) THEN
! COMPUTE BouLac mixing length for dry conditions in free atmosphere
CALL boulac_length0
(k,kts,kte,zw,dz,qtke,thetaw,elBLmin0,elBLavg0)
elf = alp5*elBLavg0*(1.-cldfra_bl1D(k)) + elf*cldfra_bl1D(k)
END IF
elf = elf*(1.-cldfra_bl1D(k)) + elb*cldfra_bl1D(k)
END IF
END IF
z_m = MAX(0.,zwk - 4.)
! ** Length scale in the surface layer **
IF ( rmo .GT. 0.0 ) THEN
els = vk*zwk/(1.0+cns*MIN( zwk*rmo, zmax ))
els1 = vk*z_m/(1.0+cns*MIN( zwk*rmo, zmax ))
ELSE
els = vk*zwk*( 1.0 - alp4* zwk*rmo )**0.2
els1 = vk*z_m*( 1.0 - alp4* zwk*rmo )**0.2
END IF
!
! ** HARMONC AVERGING OF MIXING LENGTH SCALES:
! el(k) = MIN(elb/( elb/elt+elb/els+1.0 ),elf)
! el(k) = elb/( elb/elt+elb/els+1.0 )
wt=.5*TANH((zwk - (zi2+h1))/h2) + .5
IF ( bl_mynn_mixlength .EQ. 0 ) THEN
el(k) = MIN(elb/( elb/elt+elb/els+1.0 ),elf)
ELSE IF ( bl_mynn_mixlength .EQ. 1 ) THEN
!add blending to use BouLac mixing length in free atmos;
!defined relative to the PBLH (zi) + transition layer (h1)
el(k) = MIN(elb/( elb/elt+elb/els+1.0 ),elf)
el(k) = el(k)*(1.-wt) + alp5*elBLmin(k)*wt
!JAYMES- el_stab & el_unstab blending begin ( bl_mynn_mixlength opt)
ELSE IF ( bl_mynn_mixlength .GE. 2 ) THEN
el_unstab = els/(1. + (els1/elt))
el_stab = MIN(el_unstab, elb)
el_stab_mf = MIN(el_unstab, elb_mf)
IF (bl_mynn_edmf > 0 .AND. edmf_a1(kts)>0.0) THEN
!Force version of buiyncay mixing length with the enhancement factor to be used
!when the mass-flux scheme is active.
el(k) = el_stab_mf
ELSE
el(k) = el_stab
ENDIF
el(k) = el(k)*(1.-wt) + elf*wt
END IF
IF ( bl_mynn_mixlength .GE. 1 ) THEN ! include scale-awareness, except for original MYNN
el(k) = el(k)*Psig_bl
END IF
! Stochastic perturbations of turbulent mixing length
if (spp_pbl==1) then
if (k.lt.25) then
el(k)= el(k) + el(k)* rstoch_col(k) * 1.5 * MAX(exp(-MAX(zwk-3000.,0.0)/2000.),0.01)
endif
endif
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
IF (el(k) > 1000.) THEN
WRITE ( mynn_message , FMT='(A,F7.0,I5,4F7.0)' ) &
' MYNN; mym_length; LARGE el,k,elb,elt,elf,tau:'&
, el(k),k,elb,elt,elf,tau_cloud
CALL wrf_debug
( 0 , mynn_message )
ENDIF
ENDIF
END DO
!
RETURN
END SUBROUTINE mym_length
!JOE- BouLac Code Start -
! ==================================================================
SUBROUTINE boulac_length0(k,kts,kte,zw,dz,qtke,theta,lb1,lb2) 2
!
! NOTE: This subroutine was taken from the BouLac scheme in WRF-ARW
! and modified for integration into the MYNN PBL scheme.
! WHILE loops were added to reduce the computational expense.
! This subroutine computes the length scales up and down
! and then computes the min, average of the up/down
! length scales, and also considers the distance to the
! surface.
!
! dlu = the distance a parcel can be lifted upwards give a finite
! amount of TKE.
! dld = the distance a parcel can be displaced downwards given a
! finite amount of TKE.
! lb1 = the minimum of the length up and length down
! lb2 = the average of the length up and length down
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: k,kts,kte
REAL, DIMENSION(kts:kte), INTENT(IN) :: qtke,dz,theta
REAL, INTENT(OUT) :: lb1,lb2
REAL, DIMENSION(kts:kte+1), INTENT(IN) :: zw
!LOCAL VARS
INTEGER :: izz, found
REAL :: dlu,dld
REAL :: dzt, zup, beta, zup_inf, bbb, tl, zdo, zdo_sup, zzz
!----------------------------------
! FIND DISTANCE UPWARD
!----------------------------------
zup=0.
dlu=zw(kte+1)-zw(k)-dz(k)/2.
zzz=0.
zup_inf=0.
beta=g/theta(k) !Buoyancy coefficient
!print*,"FINDING Dup, k=",k," zw=",zw(k)
if (k .lt. kte) then !cant integrate upwards from highest level
found = 0
izz=k
DO WHILE (found .EQ. 0)
if (izz .lt. kte) then
dzt=dz(izz) ! layer depth above
zup=zup-beta*theta(k)*dzt ! initial PE the parcel has at k
!print*," ",k,izz,theta(izz),dz(izz)
zup=zup+beta*(theta(izz+1)+theta(izz))*dzt/2. ! PE gained by lifting a parcel to izz+1
zzz=zzz+dzt ! depth of layer k to izz+1
!print*," PE=",zup," TKE=",qtke(k)," z=",zw(izz)
if (qtke(k).lt.zup .and. qtke(k).ge.zup_inf) then
bbb=(theta(izz+1)-theta(izz))/dzt
if (bbb .ne. 0.) then
!fractional distance up into the layer where TKE becomes < PE
tl=(-beta*(theta(izz)-theta(k)) + &
& sqrt( max(0.,(beta*(theta(izz)-theta(k)))**2. + &
& 2.*bbb*beta*(qtke(k)-zup_inf))))/bbb/beta
else
if (theta(izz) .ne. theta(k))then
tl=(qtke(k)-zup_inf)/(beta*(theta(izz)-theta(k)))
else
tl=0.
endif
endif
dlu=zzz-dzt+tl
!print*," FOUND Dup:",dlu," z=",zw(izz)," tl=",tl
found =1
endif
zup_inf=zup
izz=izz+1
ELSE
found = 1
ENDIF
ENDDO
endif
!----------------------------------
! FIND DISTANCE DOWN
!----------------------------------
zdo=0.
zdo_sup=0.
dld=zw(k)
zzz=0.
!print*,"FINDING Ddown, k=",k," zwk=",zw(k)
if (k .gt. kts) then !cant integrate downwards from lowest level
found = 0
izz=k
DO WHILE (found .EQ. 0)
if (izz .gt. kts) then
dzt=dz(izz-1)
zdo=zdo+beta*theta(k)*dzt
!print*," ",k,izz,theta(izz),dz(izz-1)
zdo=zdo-beta*(theta(izz-1)+theta(izz))*dzt/2.
zzz=zzz+dzt
!print*," PE=",zdo," TKE=",qtke(k)," z=",zw(izz)
if (qtke(k).lt.zdo .and. qtke(k).ge.zdo_sup) then
bbb=(theta(izz)-theta(izz-1))/dzt
if (bbb .ne. 0.) then
tl=(beta*(theta(izz)-theta(k))+ &
& sqrt( max(0.,(beta*(theta(izz)-theta(k)))**2. + &
& 2.*bbb*beta*(qtke(k)-zdo_sup))))/bbb/beta
else
if (theta(izz) .ne. theta(k)) then
tl=(qtke(k)-zdo_sup)/(beta*(theta(izz)-theta(k)))
else
tl=0.
endif
endif
dld=zzz-dzt+tl
!print*," FOUND Ddown:",dld," z=",zw(izz)," tl=",tl
found = 1
endif
zdo_sup=zdo
izz=izz-1
ELSE
found = 1
ENDIF
ENDDO
endif
!----------------------------------
! GET MINIMUM (OR AVERAGE)
!----------------------------------
!The surface layer length scale can exceed z for large z/L,
!so keep maximum distance down > z.
dld = min(dld,zw(k+1))!not used in PBL anyway, only free atmos
lb1 = min(dlu,dld) !minimum
!JOE-fight floating point errors
dlu=MAX(0.1,MIN(dlu,1000.))
dld=MAX(0.1,MIN(dld,1000.))
lb2 = sqrt(dlu*dld) !average - biased towards smallest
!lb2 = 0.5*(dlu+dld) !average
if (k .eq. kte) then
lb1 = 0.
lb2 = 0.
endif
!print*,"IN MYNN-BouLac",k,lb1
!print*,"IN MYNN-BouLac",k,dld,dlu
END SUBROUTINE boulac_length0
! ==================================================================
SUBROUTINE boulac_length(kts,kte,zw,dz,qtke,theta,lb1,lb2) 1,29
!
! NOTE: This subroutine was taken from the BouLac scheme in WRF-ARW
! and modified for integration into the MYNN PBL scheme.
! WHILE loops were added to reduce the computational expense.
! This subroutine computes the length scales up and down
! and then computes the min, average of the up/down
! length scales, and also considers the distance to the
! surface.
!
! dlu = the distance a parcel can be lifted upwards give a finite
! amount of TKE.
! dld = the distance a parcel can be displaced downwards given a
! finite amount of TKE.
! lb1 = the minimum of the length up and length down
! lb2 = the average of the length up and length down
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: kts,kte
REAL, DIMENSION(kts:kte), INTENT(IN) :: qtke,dz,theta
REAL, DIMENSION(kts:kte), INTENT(OUT) :: lb1,lb2
REAL, DIMENSION(kts:kte+1), INTENT(IN) :: zw
!LOCAL VARS
INTEGER :: iz, izz, found
REAL, DIMENSION(kts:kte) :: dlu,dld
REAL, PARAMETER :: Lmax=2000. !soft limit
REAL :: dzt, zup, beta, zup_inf, bbb, tl, zdo, zdo_sup, zzz
!print*,"IN MYNN-BouLac",kts, kte
do iz=kts,kte
!----------------------------------
! FIND DISTANCE UPWARD
!----------------------------------
zup=0.
dlu(iz)=zw(kte+1)-zw(iz)-dz(iz)/2.
zzz=0.
zup_inf=0.
beta=g/theta(iz) !Buoyancy coefficient
!print*,"FINDING Dup, k=",iz," zw=",zw(iz)
if (iz .lt. kte) then !cant integrate upwards from highest level
found = 0
izz=iz
DO WHILE (found .EQ. 0)
if (izz .lt. kte) then
dzt=dz(izz) ! layer depth above
zup=zup-beta*theta(iz)*dzt ! initial PE the parcel has at iz
!print*," ",iz,izz,theta(izz),dz(izz)
zup=zup+beta*(theta(izz+1)+theta(izz))*dzt/2. ! PE gained by lifting a parcel to izz+1
zzz=zzz+dzt ! depth of layer iz to izz+1
!print*," PE=",zup," TKE=",qtke(iz)," z=",zw(izz)
if (qtke(iz).lt.zup .and. qtke(iz).ge.zup_inf) then
bbb=(theta(izz+1)-theta(izz))/dzt
if (bbb .ne. 0.) then
!fractional distance up into the layer where TKE becomes < PE
tl=(-beta*(theta(izz)-theta(iz)) + &
& sqrt( max(0.,(beta*(theta(izz)-theta(iz)))**2. + &
& 2.*bbb*beta*(qtke(iz)-zup_inf))))/bbb/beta
else
if (theta(izz) .ne. theta(iz))then
tl=(qtke(iz)-zup_inf)/(beta*(theta(izz)-theta(iz)))
else
tl=0.
endif
endif
dlu(iz)=zzz-dzt+tl
!print*," FOUND Dup:",dlu(iz)," z=",zw(izz)," tl=",tl
found =1
endif
zup_inf=zup
izz=izz+1
ELSE
found = 1
ENDIF
ENDDO
endif
!----------------------------------
! FIND DISTANCE DOWN
!----------------------------------
zdo=0.
zdo_sup=0.
dld(iz)=zw(iz)
zzz=0.
!print*,"FINDING Ddown, k=",iz," zwk=",zw(iz)
if (iz .gt. kts) then !cant integrate downwards from lowest level
found = 0
izz=iz
DO WHILE (found .EQ. 0)
if (izz .gt. kts) then
dzt=dz(izz-1)
zdo=zdo+beta*theta(iz)*dzt
!print*," ",iz,izz,theta(izz),dz(izz-1)
zdo=zdo-beta*(theta(izz-1)+theta(izz))*dzt/2.
zzz=zzz+dzt
!print*," PE=",zdo," TKE=",qtke(iz)," z=",zw(izz)
if (qtke(iz).lt.zdo .and. qtke(iz).ge.zdo_sup) then
bbb=(theta(izz)-theta(izz-1))/dzt
if (bbb .ne. 0.) then
tl=(beta*(theta(izz)-theta(iz))+ &
& sqrt( max(0.,(beta*(theta(izz)-theta(iz)))**2. + &
& 2.*bbb*beta*(qtke(iz)-zdo_sup))))/bbb/beta
else
if (theta(izz) .ne. theta(iz)) then
tl=(qtke(iz)-zdo_sup)/(beta*(theta(izz)-theta(iz)))
else
tl=0.
endif
endif
dld(iz)=zzz-dzt+tl
!print*," FOUND Ddown:",dld(iz)," z=",zw(izz)," tl=",tl
found = 1
endif
zdo_sup=zdo
izz=izz-1
ELSE
found = 1
ENDIF
ENDDO
endif
!----------------------------------
! GET MINIMUM (OR AVERAGE)
!----------------------------------
!The surface layer length scale can exceed z for large z/L,
!so keep maximum distance down > z.
dld(iz) = min(dld(iz),zw(iz+1))!not used in PBL anyway, only free atmos
lb1(iz) = min(dlu(iz),dld(iz)) !minimum
!JOE-fight floating point errors
dlu(iz)=MAX(0.1,MIN(dlu(iz),1000.))
dld(iz)=MAX(0.1,MIN(dld(iz),1000.))
lb2(iz) = sqrt(dlu(iz)*dld(iz)) !average - biased towards smallest
!lb2(iz) = 0.5*(dlu(iz)+dld(iz)) !average
!Apply soft limit (only impacts very large lb; lb=100 by 5%, lb=500 by 20%).
lb1(iz) = lb1(iz)/(1. + (lb1(iz)/Lmax))
lb2(iz) = lb2(iz)/(1. + (lb2(iz)/Lmax))
if (iz .eq. kte) then
lb1(kte) = lb1(kte-1)
lb2(kte) = lb2(kte-1)
endif
!print*,"IN MYNN-BouLac",kts, kte,lb1(iz)
!print*,"IN MYNN-BouLac",iz,dld(iz),dlu(iz)
ENDDO
END SUBROUTINE boulac_length
!
!JOE-END BOULAC CODE
! ==================================================================
! SUBROUTINE mym_turbulence:
!
! Input variables: see subroutine mym_initialize
! levflag : <>3; Level 2.5
! = 3; Level 3
!
! # ql, vt, vq, qke, tsq, qsq and cov are changed to input variables.
!
! Output variables: see subroutine mym_initialize
! dfm(nx,nz,ny) : Diffusivity coefficient for momentum,
! divided by dz (not dz*h(i,j)) (m/s)
! dfh(nx,nz,ny) : Diffusivity coefficient for heat,
! divided by dz (not dz*h(i,j)) (m/s)
! dfq(nx,nz,ny) : Diffusivity coefficient for q^2,
! divided by dz (not dz*h(i,j)) (m/s)
! tcd(nx,nz,ny) : Countergradient diffusion term for Theta_l
! (K/s)
! qcd(nx,nz,ny) : Countergradient diffusion term for Q_w
! (kg/kg s)
! pd?(nx,nz,ny) : Half of the production terms
!
! Only tcd and qcd are defined at the center of the grid boxes
!
! # DO NOT forget that tcd and qcd are added on the right-hand side
! of the equations for Theta_l and Q_w, respectively.
!
! Work arrays: see subroutine mym_initialize and level2
!
! # dtl, dqw, dtv, gm and gh are allowed to share storage units with
! dfm, dfh, dfq, tcd and qcd, respectively, for saving memory.
!
SUBROUTINE mym_turbulence ( & 1
& kts,kte, &
& levflag, &
& dz, zw, &
& u, v, thl, ql, qw, &
& qke, tsq, qsq, cov, &
& vt, vq, &
& rmo, flt, flq, &
& zi,theta, &
& sh, &
& El, &
& Dfm, Dfh, Dfq, Tcd, Qcd, Pdk, Pdt, Pdq, Pdc, &
& qWT1D,qSHEAR1D,qBUOY1D,qDISS1D, &
& bl_mynn_tkebudget, &
& Psig_bl,Psig_shcu,cldfra_bl1D,bl_mynn_mixlength,&
& edmf_a1,edmf_qc1,bl_mynn_edmf,&
& spp_pbl,rstoch_col)
!-------------------------------------------------------------------
!
INTEGER, INTENT(IN) :: kts,kte
INTEGER, INTENT(IN) :: levflag,bl_mynn_mixlength,bl_mynn_edmf
REAL, DIMENSION(kts:kte), INTENT(in) :: dz
REAL, DIMENSION(kts:kte+1), INTENT(in) :: zw
REAL, INTENT(in) :: rmo,flt,flq,Psig_bl,Psig_shcu
REAL, DIMENSION(kts:kte), INTENT(in) :: u,v,thl,qw,&
&ql,vt,vq,qke,tsq,qsq,cov,cldfra_bl1D,edmf_a1,edmf_qc1
REAL, DIMENSION(kts:kte), INTENT(out) :: dfm,dfh,dfq,&
&pdk,pdt,pdq,pdc,tcd,qcd,el
!JOE-TKE BUDGET
REAL, DIMENSION(kts:kte), INTENT(inout) :: &
qWT1D,qSHEAR1D,qBUOY1D,qDISS1D
REAL :: q3sq_old,dlsq1,qWTP_old,qWTP_new
REAL :: dudz,dvdz,dTdz,&
upwp,vpwp,Tpwp
INTEGER, INTENT(in) :: bl_mynn_tkebudget
!JOE-end
REAL, DIMENSION(kts:kte) :: qkw,dtl,dqw,dtv,gm,gh,sm,sh
INTEGER :: k
! REAL :: cc2,cc3,e1c,e2c,e3c,e4c,e5c
REAL :: e6c,dzk,afk,abk,vtt,vqq,&
&cw25,clow,cupp,gamt,gamq,smd,gamv,elq,elh
REAL :: zi
REAL, DIMENSION(kts:kte), INTENT(in) :: theta
REAL :: a2den, duz, ri, HLmod !JOE-Canuto/Kitamura mod
!JOE-stability criteria for cw
REAL:: auh,aum,adh,adm,aeh,aem,Req,Rsl,Rsl2
!JOE-end
DOUBLE PRECISION q2sq, t2sq, r2sq, c2sq, elsq, gmel, ghel
DOUBLE PRECISION q3sq, t3sq, r3sq, c3sq, dlsq, qdiv
DOUBLE PRECISION e1, e2, e3, e4, enum, eden, wden
! Stochastic
INTEGER, INTENT(IN) :: spp_pbl
REAL, DIMENSION(KTS:KTE) :: rstoch_col
REAL :: prlimit
!
! tv0 = 0.61*tref
! gtr = 9.81/tref
!
! cc2 = 1.0-c2
! cc3 = 1.0-c3
! e1c = 3.0*a2*b2*cc3
! e2c = 9.0*a1*a2*cc2
! e3c = 9.0*a2*a2*cc2*( 1.0-c5 )
! e4c = 12.0*a1*a2*cc2
! e5c = 6.0*a1*a1
!
CALL mym_level2
(kts,kte,&
& dz, &
& u, v, thl, qw, &
& ql, vt, vq, &
& dtl, dqw, dtv, gm, gh, sm, sh )
!
CALL mym_length
( &
& kts,kte, &
& dz, zw, &
& rmo, flt, flq, &
& vt, vq, &
& qke, &
& dtv, &
& el, &
& zi,theta, &
& qkw,Psig_bl,cldfra_bl1D,bl_mynn_mixlength, &
& edmf_a1,edmf_qc1,bl_mynn_edmf, &
& spp_pbl,rstoch_col)
!
DO k = kts+1,kte
dzk = 0.5 *( dz(k)+dz(k-1) )
afk = dz(k)/( dz(k)+dz(k-1) )
abk = 1.0 -afk
elsq = el (k)**2
q2sq = b1*elsq*( sm(k)*gm(k)+sh(k)*gh(k) )
q3sq = qkw(k)**2
!JOE-Canuto/Kitamura mod
duz = ( u(k)-u(k-1) )**2 +( v(k)-v(k-1) )**2
duz = duz /dzk**2
! ** Gradient Richardson number **
ri = -gh(k)/MAX( duz, 1.0e-10 )
IF (CKmod .eq. 1) THEN
a2den = 1. + MAX(ri,0.0)
ELSE
a2den = 1. + 0.0
ENDIF
!JOE-end
!
! Modified: Dec/22/2005, from here, (dlsq -> elsq)
gmel = gm (k)*elsq
ghel = gh (k)*elsq
! Modified: Dec/22/2005, up to here
! Level 2.0 debug prints
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
IF (sh(k)<0.0 .OR. sm(k)<0.0) THEN
WRITE ( mynn_message , FMT='(A,F8.1,A,I6)' ) &
" MYNN; mym_turbulence2.0; sh=",sh(k)," k=",k
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" gm=",gm(k)," gh=",gh(k)," sm=",sm(k)
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" q2sq=",q2sq," q3sq=",q3sq," q3/q2=",q3sq/q2sq
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" qke=",qke(k)," el=",el(k)," ri=",ri
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" PBLH=",zi," u=",u(k)," v=",v(k)
CALL wrf_debug
( 0 , mynn_message )
ENDIF
ENDIF
!JOE-Apply Helfand & Labraga stability check for all Ric
! when CKmod == 1. (currently not forced below)
IF (CKmod .eq. 1) THEN
HLmod = q2sq -1.
ELSE
HLmod = q3sq
ENDIF
! ** Since qkw is set to more than 0.0, q3sq > 0.0. **
!JOE-test new stability criteria in level 2.5 (as well as level 3) - little/no impact
! ** Limitation on q, instead of L/q **
dlsq = elsq
IF ( q3sq/dlsq .LT. -gh(k) ) q3sq = -dlsq*gh(k)
!JOE-end
IF ( q3sq .LT. q2sq ) THEN
!IF ( HLmod .LT. q2sq ) THEN
!Apply Helfand & Labraga mod
qdiv = SQRT( q3sq/q2sq ) !HL89: (1-alfa)
sm(k) = sm(k) * qdiv
sh(k) = sh(k) * qdiv
!
!JOE-Canuto/Kitamura mod
!e1 = q3sq - e1c*ghel * qdiv**2
!e2 = q3sq - e2c*ghel * qdiv**2
!e3 = e1 + e3c*ghel * qdiv**2
!e4 = e1 - e4c*ghel * qdiv**2
e1 = q3sq - e1c*ghel/a2den * qdiv**2
e2 = q3sq - e2c*ghel/a2den * qdiv**2
e3 = e1 + e3c*ghel/(a2den**2) * qdiv**2
e4 = e1 - e4c*ghel/a2den * qdiv**2
eden = e2*e4 + e3*e5c*gmel * qdiv**2
eden = MAX( eden, 1.0d-20 )
ELSE
!JOE-Canuto/Kitamura mod
!e1 = q3sq - e1c*ghel
!e2 = q3sq - e2c*ghel
!e3 = e1 + e3c*ghel
!e4 = e1 - e4c*ghel
e1 = q3sq - e1c*ghel/a2den
e2 = q3sq - e2c*ghel/a2den
e3 = e1 + e3c*ghel/(a2den**2)
e4 = e1 - e4c*ghel/a2den
eden = e2*e4 + e3*e5c*gmel
eden = MAX( eden, 1.0d-20 )
qdiv = 1.0
sm(k) = q3sq*a1*( e3-3.0*c1*e4 )/eden
!JOE-Canuto/Kitamura mod
!sh(k) = q3sq*a2*( e2+3.0*c1*e5c*gmel )/eden
sh(k) = q3sq*(a2/a2den)*( e2+3.0*c1*e5c*gmel )/eden
END IF !end Helfand & Labraga check
!JOE: Level 2.5 debug prints
! HL88 , lev2.5 criteria from eqs. 3.17, 3.19, & 3.20
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
IF (sh(k)<0.0 .OR. sm(k)<0.0 .OR. &
sh(k) > 0.76*b2 .or. (sm(k)**2*gm(k) .gt. .44**2)) THEN
WRITE ( mynn_message , FMT='(A,F8.1,A,I6)' ) &
" MYNN; mym_turbulence2.5; sh=",sh(k)," k=",k
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" gm=",gm(k)," gh=",gh(k)," sm=",sm(k)
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" q2sq=",q2sq," q3sq=",q3sq," q3/q2=",q3sq/q2sq
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" qke=",qke(k)," el=",el(k)," ri=",ri
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" PBLH=",zi," u=",u(k)," v=",v(k)
CALL wrf_debug
( 0 , mynn_message )
ENDIF
ENDIF
! ** Level 3 : start **
IF ( levflag .EQ. 3 ) THEN
t2sq = qdiv*b2*elsq*sh(k)*dtl(k)**2
r2sq = qdiv*b2*elsq*sh(k)*dqw(k)**2
c2sq = qdiv*b2*elsq*sh(k)*dtl(k)*dqw(k)
t3sq = MAX( tsq(k)*abk+tsq(k-1)*afk, 0.0 )
r3sq = MAX( qsq(k)*abk+qsq(k-1)*afk, 0.0 )
c3sq = cov(k)*abk+cov(k-1)*afk
! Modified: Dec/22/2005, from here
c3sq = SIGN( MIN( ABS(c3sq), SQRT(t3sq*r3sq) ), c3sq )
!
vtt = 1.0 +vt(k)*abk +vt(k-1)*afk
vqq = tv0 +vq(k)*abk +vq(k-1)*afk
t2sq = vtt*t2sq +vqq*c2sq
r2sq = vtt*c2sq +vqq*r2sq
c2sq = MAX( vtt*t2sq+vqq*r2sq, 0.0d0 )
t3sq = vtt*t3sq +vqq*c3sq
r3sq = vtt*c3sq +vqq*r3sq
c3sq = MAX( vtt*t3sq+vqq*r3sq, 0.0d0 )
!
cw25 = e1*( e2 + 3.0*c1*e5c*gmel*qdiv**2 )/( 3.0*eden )
!
! ** Limitation on q, instead of L/q **
dlsq = elsq
IF ( q3sq/dlsq .LT. -gh(k) ) q3sq = -dlsq*gh(k)
!
! ** Limitation on c3sq (0.12 =< cw =< 0.76) **
!JOE: use Janjic's (2001; p 13-17) methodology (eqs 4.11-414 and 5.7-5.10)
! to calculate an exact limit for c3sq:
auh = 27.*a1*((a2/a2den)**2)*b2*(g/tref)**2
aum = 54.*(a1**2)*(a2/a2den)*b2*c1*(g/tref)
adh = 9.*a1*((a2/a2den)**2)*(12.*a1 + 3.*b2)*(g/tref)**2
adm = 18.*(a1**2)*(a2/a2den)*(b2 - 3.*(a2/a2den))*(g/tref)
aeh = (9.*a1*((a2/a2den)**2)*b1 +9.*a1*((a2/a2den)**2)* &
(12.*a1 + 3.*b2))*(g/tref)
aem = 3.*a1*(a2/a2den)*b1*(3.*(a2/a2den) + 3.*b2*c1 + &
(18.*a1*c1 - b2)) + &
(18.)*(a1**2)*(a2/a2den)*(b2 - 3.*(a2/a2den))
Req = -aeh/aem
Rsl = (auh + aum*Req)/(3.*adh + 3.*adm*Req)
!For now, use default values, since tests showed little/no sensitivity
Rsl = .12 !lower limit
Rsl2= 1.0 - 2.*Rsl !upper limit
!IF (k==2)print*,"Dynamic limit RSL=",Rsl
!IF (Rsl < 0.10 .OR. Rsl > 0.18) THEN
! wrf_err_message = '--- ERROR: MYNN: Dynamic Cw '// &
! 'limit exceeds reasonable limits'
! CALL wrf_message ( wrf_err_message )
! WRITE ( mynn_message , FMT='(A,F8.3)' ) &
! " MYNN: Dynamic Cw limit needs attention=",Rsl
! CALL wrf_debug ( 0 , mynn_message )
!ENDIF
!JOE-Canuto/Kitamura mod
!e2 = q3sq - e2c*ghel * qdiv**2
!e3 = q3sq + e3c*ghel * qdiv**2
!e4 = q3sq - e4c*ghel * qdiv**2
e2 = q3sq - e2c*ghel/a2den * qdiv**2
e3 = q3sq + e3c*ghel/(a2den**2) * qdiv**2
e4 = q3sq - e4c*ghel/a2den * qdiv**2
eden = e2*e4 + e3 *e5c*gmel * qdiv**2
!JOE-Canuto/Kitamura mod
!wden = cc3*gtr**2 * dlsq**2/elsq * qdiv**2 &
! & *( e2*e4c - e3c*e5c*gmel * qdiv**2 )
wden = cc3*gtr**2 * dlsq**2/elsq * qdiv**2 &
& *( e2*e4c/a2den - e3c*e5c*gmel/(a2den**2) * qdiv**2 )
IF ( wden .NE. 0.0 ) THEN
!JOE: test dynamic limits
!clow = q3sq*( 0.12-cw25 )*eden/wden
!cupp = q3sq*( 0.76-cw25 )*eden/wden
clow = q3sq*( Rsl -cw25 )*eden/wden
cupp = q3sq*( Rsl2-cw25 )*eden/wden
!
IF ( wden .GT. 0.0 ) THEN
c3sq = MIN( MAX( c3sq, c2sq+clow ), c2sq+cupp )
ELSE
c3sq = MAX( MIN( c3sq, c2sq+clow ), c2sq+cupp )
END IF
END IF
!
e1 = e2 + e5c*gmel * qdiv**2
eden = MAX( eden, 1.0d-20 )
! Modified: Dec/22/2005, up to here
!JOE-Canuto/Kitamura mod
!e6c = 3.0*a2*cc3*gtr * dlsq/elsq
e6c = 3.0*(a2/a2den)*cc3*gtr * dlsq/elsq
!============================
! ** for Gamma_theta **
!! enum = qdiv*e6c*( t3sq-t2sq )
IF ( t2sq .GE. 0.0 ) THEN
enum = MAX( qdiv*e6c*( t3sq-t2sq ), 0.0d0 )
ELSE
enum = MIN( qdiv*e6c*( t3sq-t2sq ), 0.0d0 )
ENDIF
gamt =-e1 *enum /eden
!============================
! ** for Gamma_q **
!! enum = qdiv*e6c*( r3sq-r2sq )
IF ( r2sq .GE. 0.0 ) THEN
enum = MAX( qdiv*e6c*( r3sq-r2sq ), 0.0d0 )
ELSE
enum = MIN( qdiv*e6c*( r3sq-r2sq ), 0.0d0 )
ENDIF
gamq =-e1 *enum /eden
!============================
! ** for Sm' and Sh'd(Theta_V)/dz **
!! enum = qdiv*e6c*( c3sq-c2sq )
enum = MAX( qdiv*e6c*( c3sq-c2sq ), 0.0d0)
!JOE-Canuto/Kitamura mod
!smd = dlsq*enum*gtr/eden * qdiv**2 * (e3c+e4c)*a1/a2
smd = dlsq*enum*gtr/eden * qdiv**2 * (e3c/(a2den**2) + &
& e4c/a2den)*a1/(a2/a2den)
gamv = e1 *enum*gtr/eden
sm(k) = sm(k) +smd
!============================
! ** For elh (see below), qdiv at Level 3 is reset to 1.0. **
qdiv = 1.0
! Level 3 debug prints
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
IF (sh(k)<-0.3 .OR. sm(k)<-0.3 .OR. &
qke(k) < -0.1 .or. ABS(smd) .gt. 2.0) THEN
WRITE ( mynn_message , FMT='(A,F8.1,A,I6)' ) &
" MYNN; mym_turbulence3.0; sh=",sh(k)," k=",k
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" gm=",gm(k)," gh=",gh(k)," sm=",sm(k)
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" q2sq=",q2sq," q3sq=",q3sq," q3/q2=",q3sq/q2sq
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" qke=",qke(k)," el=",el(k)," ri=",ri
CALL wrf_debug
( 0 , mynn_message )
WRITE ( mynn_message , FMT='(A,F6.1,A,F6.1,A,F6.1)' ) &
" PBLH=",zi," u=",u(k)," v=",v(k)
CALL wrf_debug
( 0 , mynn_message )
ENDIF
ENDIF
! ** Level 3 : end **
ELSE
! ** At Level 2.5, qdiv is not reset. **
gamt = 0.0
gamq = 0.0
gamv = 0.0
END IF
!
! Add stochastic perturbation of prandtl number limit
if (spp_pbl==1) then
prlimit = MIN(MAX(1.,2.5 + 5.0*rstoch_col(k)), 10.)
IF(sm(k) > sh(k)*Prlimit) THEN
sm(k) = sh(k)*Prlimit
ENDIF
ENDIF
!
elq = el(k)*qkw(k)
elh = elq*qdiv
! Production of TKE (pdk), T-variance (pdt),
! q-variance (pdq), and covariance (pdc)
pdk(k) = elq*( sm(k)*gm(k) &
& +sh(k)*gh(k)+gamv ) ! JAYMES TKE
pdt(k) = elh*( sh(k)*dtl(k)+gamt )*dtl(k)
pdq(k) = elh*( sh(k)*dqw(k)+gamq )*dqw(k)
pdc(k) = elh*( sh(k)*dtl(k)+gamt )&
&*dqw(k)*0.5 &
&+elh*( sh(k)*dqw(k)+gamq )*dtl(k)*0.5
! Contergradient terms
tcd(k) = elq*gamt
qcd(k) = elq*gamq
! Eddy Diffusivity/Viscosity divided by dz
dfm(k) = elq*sm(k) / dzk
dfh(k) = elq*sh(k) / dzk
! Modified: Dec/22/2005, from here
! ** In sub.mym_predict, dfq for the TKE and scalar variance **
! ** are set to 3.0*dfm and 1.0*dfm, respectively. (Sqfac) **
dfq(k) = dfm(k)
! Modified: Dec/22/2005, up to here
IF ( bl_mynn_tkebudget == 1) THEN
!TKE BUDGET
dudz = ( u(k)-u(k-1) )/dzk
dvdz = ( v(k)-v(k-1) )/dzk
dTdz = ( thl(k)-thl(k-1) )/dzk
upwp = -elq*sm(k)*dudz
vpwp = -elq*sm(k)*dvdz
Tpwp = -elq*sh(k)*dTdz
Tpwp = SIGN(MAX(ABS(Tpwp),1.E-6),Tpwp)
IF ( k .EQ. kts+1 ) THEN
qWT1D(kts)=0.
q3sq_old =0.
qWTP_old =0.
!** Limitation on q, instead of L/q **
dlsq1 = MAX(el(kts)**2,1.0)
IF ( q3sq_old/dlsq1 .LT. -gh(k) ) q3sq_old = -dlsq1*gh(k)
ENDIF
!!!Vertical Transport Term
qWTP_new = elq*Sqfac*sm(k)*(q3sq - q3sq_old)/dzk
qWT1D(k) = 0.5*(qWTP_new - qWTP_old)/dzk
qWTP_old = elq*Sqfac*sm(k)*(q3sq - q3sq_old)/dzk
q3sq_old = q3sq
!!!Shear Term
!!!qSHEAR1D(k)=-(upwp*dudz + vpwp*dvdz)
qSHEAR1D(k) = elq*sm(k)*gm(k)
!!!Buoyancy Term
!!!qBUOY1D(k)=g*Tpwp/thl(k)
!qBUOY1D(k)= elq*(sh(k)*gh(k) + gamv)
qBUOY1D(k) = elq*(sh(k)*(-dTdz*g/thl(k)) + gamv)
!!!Dissipation Term
qDISS1D(k) = (q3sq**(3./2.))/(b1*MAX(el(k),1.))
ENDIF
END DO
!
dfm(kts) = 0.0
dfh(kts) = 0.0
dfq(kts) = 0.0
tcd(kts) = 0.0
qcd(kts) = 0.0
tcd(kte) = 0.0
qcd(kte) = 0.0
!
DO k = kts,kte-1
dzk = dz(k)
tcd(k) = ( tcd(k+1)-tcd(k) )/( dzk )
qcd(k) = ( qcd(k+1)-qcd(k) )/( dzk )
END DO
!
IF ( bl_mynn_tkebudget == 1) THEN
!JOE-TKE BUDGET
qWT1D(kts)=0.
qSHEAR1D(kts)=qSHEAR1D(kts+1)
qBUOY1D(kts)=qBUOY1D(kts+1)
qDISS1D(kts)=qDISS1D(kts+1)
ENDIF
RETURN
END SUBROUTINE mym_turbulence
! ==================================================================
! SUBROUTINE mym_predict:
!
! Input variables: see subroutine mym_initialize and turbulence
! qke(nx,nz,ny) : qke at (n)th time level
! tsq, ...cov : ditto
!
! Output variables:
! qke(nx,nz,ny) : qke at (n+1)th time level
! tsq, ...cov : ditto
!
! Work arrays:
! qkw(nx,nz,ny) : q at the center of the grid boxes (m/s)
! bp (nx,nz,ny) : = 1/2*F, see below
! rp (nx,nz,ny) : = P-1/2*F*Q, see below
!
! # The equation for a turbulent quantity Q can be expressed as
! dQ/dt + Ah + Av = Dh + Dv + P - F*Q, (1)
! where A is the advection, D the diffusion, P the production,
! F*Q the dissipation and h and v denote horizontal and vertical,
! respectively. If Q is q^2, F is 2q/B_1L.
! Using the Crank-Nicholson scheme for Av, Dv and F*Q, a finite
! difference equation is written as
! Q{n+1} - Q{n} = dt *( Dh{n} - Ah{n} + P{n} )
! + dt/2*( Dv{n} - Av{n} - F*Q{n} )
! + dt/2*( Dv{n+1} - Av{n+1} - F*Q{n+1} ), (2)
! where n denotes the time level.
! When the advection and diffusion terms are discretized as
! dt/2*( Dv - Av ) = a(k)Q(k+1) - b(k)Q(k) + c(k)Q(k-1), (3)
! Eq.(2) can be rewritten as
! - a(k)Q(k+1) + [ 1 + b(k) + dt/2*F ]Q(k) - c(k)Q(k-1)
! = Q{n} + dt *( Dh{n} - Ah{n} + P{n} )
! + dt/2*( Dv{n} - Av{n} - F*Q{n} ), (4)
! where Q on the left-hand side is at (n+1)th time level.
!
! In this subroutine, a(k), b(k) and c(k) are obtained from
! subprogram coefvu and are passed to subprogram tinteg via
! common. 1/2*F and P-1/2*F*Q are stored in bp and rp,
! respectively. Subprogram tinteg solves Eq.(4).
!
! Modify this subroutine according to your numerical integration
! scheme (program).
!
!-------------------------------------------------------------------
SUBROUTINE mym_predict (kts,kte,& 1
& levflag, &
& delt,&
& dz, &
& ust, flt, flq, pmz, phh, &
& el, dfq, &
& pdk, pdt, pdq, pdc,&
& qke, tsq, qsq, cov, &
& s_aw,s_awqke,bl_mynn_edmf_tke &
&)
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: kts,kte
INTEGER, INTENT(IN) :: levflag
INTEGER, INTENT(IN) :: bl_mynn_edmf_tke
REAL, INTENT(IN) :: delt
REAL, DIMENSION(kts:kte), INTENT(IN) :: dz, dfq,el
REAL, DIMENSION(kts:kte), INTENT(INOUT) :: pdk, pdt, pdq, pdc
REAL, INTENT(IN) :: flt, flq, ust, pmz, phh
REAL, DIMENSION(kts:kte), INTENT(INOUT) :: qke,tsq, qsq, cov
! WA 8/3/15
REAL, DIMENSION(kts:kte+1), INTENT(INOUT) :: s_awqke,s_aw
INTEGER :: k,nz
REAL, DIMENSION(kts:kte) :: qkw, bp, rp, df3q
REAL :: vkz,pdk1,phm,pdt1,pdq1,pdc1,b1l,b2l,onoff
REAL, DIMENSION(kts:kte) :: dtz
REAL, DIMENSION(1:kte-kts+1) :: a,b,c,d
nz=kte-kts+1
! REGULATE THE MOMENTUM MIXING FROM THE MASS-FLUX SCHEME (on or off)
IF (bl_mynn_edmf_tke == 0) THEN
onoff=0.0
ELSE
onoff=1.0
ENDIF
! ** Strictly, vkz*h(i,j) -> vk*( 0.5*dz(1)*h(i,j)+z0 ) **
vkz = vk*0.5*dz(kts)
!
! ** dfq for the TKE is 3.0*dfm. **
!
DO k = kts,kte
!! qke(k) = MAX(qke(k), 0.0)
qkw(k) = SQRT( MAX( qke(k), 0.0 ) )
df3q(k)=Sqfac*dfq(k)
dtz(k)=delt/dz(k)
END DO
!
pdk1 = 2.0*ust**3*pmz/( vkz )
phm = 2.0/ust *phh/( vkz )
pdt1 = phm*flt**2
pdq1 = phm*flq**2
pdc1 = phm*flt*flq
!
! ** pdk(i,j,1)+pdk(i,j,2) corresponds to pdk1. **
pdk(kts) = pdk1 -pdk(kts+1)
!! pdt(kts) = pdt1 -pdt(kts+1)
!! pdq(kts) = pdq1 -pdq(kts+1)
!! pdc(kts) = pdc1 -pdc(kts+1)
pdt(kts) = pdt(kts+1)
pdq(kts) = pdq(kts+1)
pdc(kts) = pdc(kts+1)
!
! ** Prediction of twice the turbulent kinetic energy **
!! DO k = kts+1,kte-1
DO k = kts,kte-1
b1l = b1*0.5*( el(k+1)+el(k) )
bp(k) = 2.*qkw(k) / b1l
rp(k) = pdk(k+1) + pdk(k)
END DO
!! a(1)=0.
!! b(1)=1.
!! c(1)=-1.
!! d(1)=0.
! Since df3q(kts)=0.0, a(1)=0.0 and b(1)=1.+dtz(k)*df3q(k+1)+bp(k)*delt.
DO k=kts,kte-1
! a(k-kts+1)=-dtz(k)*df3q(k)
! b(k-kts+1)=1.+dtz(k)*(df3q(k)+df3q(k+1))+bp(k)*delt
! c(k-kts+1)=-dtz(k)*df3q(k+1)
! d(k-kts+1)=rp(k)*delt + qke(k)
! WA 8/3/15 add EDMF contribution
a(k-kts+1)=-dtz(k)*df3q(k) + 0.5*dtz(k)*s_aw(k)*onoff
b(k-kts+1)=1. + dtz(k)*(df3q(k)+df3q(k+1)) &
+ 0.5*dtz(k)*(s_aw(k)-s_aw(k+1))*onoff + bp(k)*delt
c(k-kts+1)=-dtz(k)*df3q(k+1) - 0.5*dtz(k)*s_aw(k+1)*onoff
d(k-kts+1)=rp(k)*delt + qke(k) + dtz(k)*(s_awqke(k)-s_awqke(k+1))*onoff
ENDDO
!! DO k=kts+1,kte-1
!! a(k-kts+1)=-dtz(k)*df3q(k)
!! b(k-kts+1)=1.+dtz(k)*(df3q(k)+df3q(k+1))
!! c(k-kts+1)=-dtz(k)*df3q(k+1)
!! d(k-kts+1)=rp(k)*delt + qke(k) - qke(k)*bp(k)*delt
!! ENDDO
a(nz)=-1. !0.
b(nz)=1.
c(nz)=0.
d(nz)=0.
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
qke(k)=d
(k-kts+1)
ENDDO
IF ( levflag .EQ. 3 ) THEN
!
! Modified: Dec/22/2005, from here
! ** dfq for the scalar variance is 1.0*dfm. **
! CALL coefvu ( dfq, 1.0 ) make change here
! Modified: Dec/22/2005, up to here
!
! ** Prediction of the temperature variance **
!! DO k = kts+1,kte-1
DO k = kts,kte-1
b2l = b2*0.5*( el(k+1)+el(k) )
bp(k) = 2.*qkw(k) / b2l
rp(k) = pdt(k+1) + pdt(k)
END DO
!zero gradient for tsq at bottom and top
!! a(1)=0.
!! b(1)=1.
!! c(1)=-1.
!! d(1)=0.
! Since dfq(kts)=0.0, a(1)=0.0 and b(1)=1.+dtz(k)*dfq(k+1)+bp(k)*delt.
DO k=kts,kte-1
a(k-kts+1)=-dtz(k)*dfq(k)
b(k-kts+1)=1.+dtz(k)*(dfq(k)+dfq(k+1))+bp(k)*delt
c(k-kts+1)=-dtz(k)*dfq(k+1)
d(k-kts+1)=rp(k)*delt + tsq(k)
ENDDO
!! DO k=kts+1,kte-1
!! a(k-kts+1)=-dtz(k)*dfq(k)
!! b(k-kts+1)=1.+dtz(k)*(dfq(k)+dfq(k+1))
!! c(k-kts+1)=-dtz(k)*dfq(k+1)
!! d(k-kts+1)=rp(k)*delt + tsq(k) - tsq(k)*bp(k)*delt
!! ENDDO
a(nz)=-1. !0.
b(nz)=1.
c(nz)=0.
d(nz)=0.
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
tsq(k)=d
(k-kts+1)
ENDDO
! ** Prediction of the moisture variance **
!! DO k = kts+1,kte-1
DO k = kts,kte-1
b2l = b2*0.5*( el(k+1)+el(k) )
bp(k) = 2.*qkw(k) / b2l
rp(k) = pdq(k+1) +pdq(k)
END DO
!zero gradient for qsq at bottom and top
!! a(1)=0.
!! b(1)=1.
!! c(1)=-1.
!! d(1)=0.
! Since dfq(kts)=0.0, a(1)=0.0 and b(1)=1.+dtz(k)*dfq(k+1)+bp(k)*delt.
DO k=kts,kte-1
a(k-kts+1)=-dtz(k)*dfq(k)
b(k-kts+1)=1.+dtz(k)*(dfq(k)+dfq(k+1))+bp(k)*delt
c(k-kts+1)=-dtz(k)*dfq(k+1)
d(k-kts+1)=rp(k)*delt + qsq(k)
ENDDO
!! DO k=kts+1,kte-1
!! a(k-kts+1)=-dtz(k)*dfq(k)
!! b(k-kts+1)=1.+dtz(k)*(dfq(k)+dfq(k+1))
!! c(k-kts+1)=-dtz(k)*dfq(k+1)
!! d(k-kts+1)=rp(k)*delt + qsq(k) -qsq(k)*bp(k)*delt
!! ENDDO
a(nz)=-1. !0.
b(nz)=1.
c(nz)=0.
d(nz)=0.
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
qsq(k)=d
(k-kts+1)
ENDDO
! ** Prediction of the temperature-moisture covariance **
!! DO k = kts+1,kte-1
DO k = kts,kte-1
b2l = b2*0.5*( el(k+1)+el(k) )
bp(k) = 2.*qkw(k) / b2l
rp(k) = pdc(k+1) + pdc(k)
END DO
!zero gradient for tqcov at bottom and top
!! a(1)=0.
!! b(1)=1.
!! c(1)=-1.
!! d(1)=0.
! Since dfq(kts)=0.0, a(1)=0.0 and b(1)=1.+dtz(k)*dfq(k+1)+bp(k)*delt.
DO k=kts,kte-1
a(k-kts+1)=-dtz(k)*dfq(k)
b(k-kts+1)=1.+dtz(k)*(dfq(k)+dfq(k+1))+bp(k)*delt
c(k-kts+1)=-dtz(k)*dfq(k+1)
d(k-kts+1)=rp(k)*delt + cov(k)
ENDDO
!! DO k=kts+1,kte-1
!! a(k-kts+1)=-dtz(k)*dfq(k)
!! b(k-kts+1)=1.+dtz(k)*(dfq(k)+dfq(k+1))
!! c(k-kts+1)=-dtz(k)*dfq(k+1)
!! d(k-kts+1)=rp(k)*delt + cov(k) - cov(k)*bp(k)*delt
!! ENDDO
a(nz)=-1. !0.
b(nz)=1.
c(nz)=0.
d(nz)=0.
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
cov(k)=d
(k-kts+1)
ENDDO
ELSE
!! DO k = kts+1,kte-1
DO k = kts,kte-1
IF ( qkw(k) .LE. 0.0 ) THEN
b2l = 0.0
ELSE
b2l = b2*0.25*( el(k+1)+el(k) )/qkw(k)
END IF
!
tsq(k) = b2l*( pdt(k+1)+pdt(k) )
qsq(k) = b2l*( pdq(k+1)+pdq(k) )
cov(k) = b2l*( pdc(k+1)+pdc(k) )
END DO
!! tsq(kts)=tsq(kts+1)
!! qsq(kts)=qsq(kts+1)
!! cov(kts)=cov(kts+1)
tsq(kte)=tsq(kte-1)
qsq(kte)=qsq(kte-1)
cov(kte)=cov(kte-1)
END IF
END SUBROUTINE mym_predict
! ==================================================================
! SUBROUTINE mym_condensation:
!
! Input variables: see subroutine mym_initialize and turbulence
! exner(nz) : Perturbation of the Exner function (J/kg K)
! defined on the walls of the grid boxes
! This is usually computed by integrating
! d(pi)/dz = h*g*tv/tref**2
! from the upper boundary, where tv is the
! virtual potential temperature minus tref.
!
! Output variables: see subroutine mym_initialize
! cld(nx,nz,ny) : Cloud fraction
!
! Work arrays:
! qmq(nx,nz,ny) : Q_w-Q_{sl}, where Q_{sl} is the saturation
! specific humidity at T=Tl
! alp(nx,nz,ny) : Functions in the condensation process
! bet(nx,nz,ny) : ditto
! sgm(nx,nz,ny) : Combined standard deviation sigma_s
! multiplied by 2/alp
!
! # qmq, alp, bet and sgm are allowed to share storage units with
! any four of other work arrays for saving memory.
!
! # Results are sensitive particularly to values of cp and rd.
! Set these values to those adopted by you.
!
!-------------------------------------------------------------------
SUBROUTINE mym_condensation (kts,kte, & 2
& dx, dz, &
& thl, qw, &
& p,exner, &
& tsq, qsq, cov, &
& Sh, el, bl_mynn_cloudpdf,&
& qc_bl1D, cldfra_bl1D, &
& PBLH1,HFX1, &
& Vt, Vq, th, sgm)
!-------------------------------------------------------------------
INTEGER, INTENT(IN) :: kts,kte, bl_mynn_cloudpdf
REAL, INTENT(IN) :: dx,PBLH1,HFX1
REAL, DIMENSION(kts:kte), INTENT(IN) :: dz
REAL, DIMENSION(kts:kte), INTENT(IN) :: p,exner, thl, qw, &
&tsq, qsq, cov, th
REAL, DIMENSION(kts:kte), INTENT(INOUT) :: vt,vq,sgm
REAL, DIMENSION(kts:kte) :: qmq,alp,a,bet,b,ql,q1,cld,RH
REAL, DIMENSION(kts:kte), INTENT(OUT) :: qc_bl1D,cldfra_bl1D
DOUBLE PRECISION :: t3sq, r3sq, c3sq
REAL :: p2a,qsl,esat,qsat,tlk,qsat_tl,dqsl,cld0,q1k,eq1,qll,&
&q2p,pt,rac,qt,t,xl,rsl,cpm,cdhdz,Fng,qww,alpha,beta,bb,ls_min,ls,wt
INTEGER :: i,j,k
REAL :: erf
!JOE: NEW VARIABLES FOR ALTERNATE SIGMA
REAL::dth,dtl,dqw,dzk
REAL, DIMENSION(kts:kte), INTENT(IN) :: Sh,el
!JOE: variables for BL clouds
REAL::zagl,cld9,damp,edown,RHcrit,RHmean,RHsum,RHnum,Hshcu,PBLH2,ql_limit
REAL, PARAMETER :: Hfac = 3.0 !cloud depth factor for HFX (m^3/W)
REAL, PARAMETER :: HFXmin = 50.0 !min W/m^2 for BL clouds
REAL :: RH_00L, RH_00O, phi_dz, lfac
REAL, PARAMETER :: cdz = 2.0
REAL, PARAMETER :: mdz = 1.5
!JAYMES: variables for tropopause-height estimation
REAL :: theta1, theta2, ht1, ht2
INTEGER :: k_tropo
! First, obtain an estimate for the tropopause height (k), using the method employed in the
! Thompson subgrid-cloud scheme. This height will be a consideration later when determining
! the "final" subgrid-cloud properties.
! JAYMES: added 3 Nov 2016, adapted from G. Thompson
DO k = kte-3, kts, -1
theta1 = th(k)
theta2 = th(k+2)
ht1 = 44307.692 * (1.0 - (p(k)/101325.)**0.190)
ht2 = 44307.692 * (1.0 - (p(k+2)/101325.)**0.190)
if ( (((theta2-theta1)/(ht2-ht1)) .lt. 10./1500. ) .AND. &
& (ht1.lt.19000.) .and. (ht1.gt.4000.) ) then
goto 86
endif
ENDDO
86 continue
k_tropo = MAX(kts+2, k+2)
! WA TEST 8/6/15 save incoming qc and cldfra (from EDMF?)
! qc_prev = qc_bl1D
! cldfra_prev = cldfra_bl1D
zagl = 0.
! Note: kte needs to be larger than kts, i.e., kte >= kts+1.
DO k = kts,kte-1
t = th(k)*exner(k)
!x if ( ct .gt. 0.0 ) then
! a = 17.27
! b = 237.3
!x else
!x a = 21.87
!x b = 265.5
!x end if
!
! ** 3.8 = 0.622*6.11 (hPa) **
!SATURATED VAPOR PRESSURE
esat = esat_blend
(t)
!SATURATED SPECIFIC HUMIDITY
qsl=ep_2*esat/(p(k)-ep_3*esat)
!dqw/dT: Clausius-Clapeyron
dqsl = qsl*ep_2*ev/( rd*t**2 )
!RH (0 to 1.0)
RH(k)=MAX(MIN(1.0,qw(k)/MAX(1.E-8,qsl)),0.001)
alp(k) = 1.0/( 1.0+dqsl*xlvcp )
bet(k) = dqsl*p2a
IF (bl_mynn_cloudpdf == 0) THEN
!NOTE: negative bl_mynn_cloudpdf will zero-out the stratus subgrid clouds
! at the end of this subroutine.
!Sommeria and Deardorff (1977) scheme, as implemented
!in Nakanishi and Niino (2009), Appendix B
t3sq = MAX( tsq(k), 0.0 )
r3sq = MAX( qsq(k), 0.0 )
c3sq = cov(k)
c3sq = SIGN( MIN( ABS(c3sq), SQRT(t3sq*r3sq) ), c3sq )
r3sq = r3sq +bet(k)**2*t3sq -2.0*bet(k)*c3sq
!DEFICIT/EXCESS WATER CONTENT
qmq(k) = qw(k) -qsl
!ORIGINAL STANDARD DEVIATION: limit e-6 produces ~10% more BL clouds
!than e-10
sgm(k) = SQRT( MAX( r3sq, 1.0d-10 ))
!NORMALIZED DEPARTURE FROM SATURATION
q1(k) = qmq(k) / sgm(k)
!CLOUD FRACTION. rr2 = 1/SQRT(2) = 0.707
cld(k) = 0.5*( 1.0+erf( q1(k)*rr2 ) )
ELSE IF (bl_mynn_cloudpdf == 1 .OR. bl_mynn_cloudpdf == -1) THEN
!ALTERNATIVE FORM (Nakanishi & Niino 2004 BLM, eq. B6, and
!Kuwano-Yoshida et al. 2010 QJRMS, eq. 7):
if (k .eq. kts) then
dzk = 0.5*dz(k)
else
dzk = 0.5*( dz(k) + dz(k-1) )
end if
dth = 0.5*(thl(k+1)+thl(k)) - 0.5*(thl(k)+thl(MAX(k-1,kts)))
dqw = 0.5*(qw(k+1) + qw(k)) - 0.5*(qw(k) + qw(MAX(k-1,kts)))
sgm(k) = SQRT( MAX( (alp(k)**2 * MAX(el(k)**2,0.1) * &
b2 * MAX(Sh(k),0.03))/4. * &
(dqw/dzk - bet(k)*(dth/dzk ))**2 , 1.0e-10) )
qmq(k) = qw(k) -qsl
q1(k) = qmq(k) / sgm(k)
cld(k) = 0.5*( 1.0+erf( q1(k)*rr2 ) )
ELSE IF (bl_mynn_cloudpdf == 2 .OR. bl_mynn_cloudpdf == -2) THEN
!Diagnostic statistical scheme of Chaboureau and Bechtold (2002), JAS
!JAYMES- this added 27 Apr 2015
xl = xl_blend
(t) ! obtain latent heat
tlk = thl(k)*(p(k)/p1000mb)**rcp ! recover liquid temp (tl) from thl
qsat_tl = qsat_blend
(tlk,p(k)) ! get saturation water vapor mixing ratio
! at tl and p
rsl = xl*qsat_tl / (r_v*tlk**2) ! slope of C-C curve at t = tl
! CB02, Eqn. 4
cpm = cp + qw(k)*cpv ! CB02, sec. 2, para. 1
a(k) = 1./(1. + xl*rsl/cpm) ! CB02 variable "a"
qmq(k) = a(k) * (qw(k) - qsat_tl) ! saturation deficit/excess;
! the numerator of Q1
b(k) = a(k)*rsl ! CB02 variable "b"
dtl = 0.5*(thl(k+1)*(p(k+1)/p1000mb)**rcp + tlk) &
& - 0.5*(tlk + thl(MAX(k-1,kts))*(p(MAX(k-1,kts))/p1000mb)**rcp)
dqw = 0.5*(qw(k+1) + qw(k)) - 0.5*(qw(k) + qw(MAX(k-1,kts)))
if (k .eq. kts) then
dzk = 0.5*dz(k)
else
dzk = 0.5*( dz(k) + dz(k-1) )
end if
cdhdz = dtl/dzk + (g/cpm)*(1.+qw(k)) ! expression below Eq. 9
! in CB02
zagl = zagl + dz(k)
ls_min = MIN(MAX(zagl,25.),300.) ! Let this be the minimum possible length scale:
! 25 m < ls_min(=zagl) < 300 m
lfac=MIN(4.25+dx/4000.,6.) ! A dx-dependent multiplier for the master length scale:
! lfac(750 m) = 4.4
! lfac(3 km) = 5.0
! lfac(13 km) = 6.0
ls = MAX(MIN(lfac*el(k),900.),ls_min) ! Bounded: ls_min < ls < 900 m
! Note: CB02 use 900 m as a constant free-atmosphere length scale.
! Above 300 m AGL, ls_min remains 300 m. For dx = 3 km, the
! MYNN master length scale (el) must exceed 60 m before ls
! becomes responsive to el, otherwise ls = ls_min = 300 m.
sgm(k) = MAX(1.e-10, 0.225*ls*SQRT(MAX(0., & ! Eq. 9 in CB02:
& (a(k)*dqw/dzk)**2 & ! < 1st term in brackets,
& -2*a(k)*b(k)*cdhdz*dqw/dzk & ! < 2nd term,
& +b(k)**2 * cdhdz**2))) ! < 3rd term
! CB02 use a multiplier of 0.2, but 0.225 is chosen
! based on tests
q1(k) = qmq(k) / sgm(k) ! Q1, the normalized saturation
cld(k) = MAX(0., MIN(1., 0.5+0.36*ATAN(1.55*q1(k)))) ! Eq. 7 in CB02
ENDIF
END DO
zagl = 0.
RHsum=0.
RHnum=0.
RHmean=0.1 !initialize with small value for small PBLH cases
damp =0
PBLH2=MAX(10.,PBLH1)
DO k = kts,kte-1
t = th(k)*exner(k)
q1k = q1(k)
zagl = zagl + dz(k)
!q1=0.
!cld(k)=0.
IF ( bl_mynn_cloudpdf <= 1 .AND. bl_mynn_cloudpdf >= -1) THEN
!COMPUTE MEAN RH IN PBL (NOT PRESSURE WEIGHTED).
IF (zagl < PBLH2 .AND. PBLH2 > 400.) THEN
RHsum=RHsum+RH(k)
RHnum=RHnum+1.0
RHmean=RHsum/RHnum
ENDIF
RHcrit = 1. - 0.35*(1.0 - (MAX(250.- MAX(HFX1,HFXmin),0.0)/200.)**2)
if(HFX1 > HFXmin)then
cld9=MIN(MAX(0., (rh(k)-RHcrit)/(1.1-RHcrit)), 1.)**2
else
cld9=0.0
endif
edown=PBLH2*.1
!Vary BL cloud depth (Hshcu) by mean RH in PBL and HFX
!(somewhat following results from Zhang and Klein (2013, JAS))
Hshcu=200. + (RHmean+0.5)**1.5*MAX(HFX1,0.)*Hfac
if(zagl < PBLH2-edown)then
damp=MIN(1.0,exp(-ABS(((PBLH2-edown)-zagl)/edown)))
elseif(zagl >= PBLH2-edown .AND. zagl < PBLH2+Hshcu)then
damp=1.
elseif (zagl >= PBLH2+Hshcu)then
damp=MIN(1.0,exp(-ABS((zagl-(PBLH2+Hshcu))/500.)))
endif
cldfra_bl1D(k)=cld9*damp
!cldfra_bl1D(k)=cld(k) ! JAYMES: use this form to retain the Sommeria-Deardorff value
!use alternate cloud fraction to estimate qc for use in BL clouds-radiation
eq1 = rrp*EXP( -0.5*q1k*q1k )
qll = MAX( cldfra_bl1D(k)*q1k + eq1, 0.0 )
!ESTIMATED LIQUID WATER CONTENT (UNNORMALIZED)
ql (k) = alp(k)*sgm(k)*qll
if(cldfra_bl1D(k)>0.01 .and. ql(k)<1.E-6)ql(k)=1.E-6
qc_bl1D(k)=ql(k)*damp
!qc_bl1D(k)=ql(k) ! JAYMES: use this form to retain the Sommeria-Deardorff value
!now recompute estimated lwc for PBL scheme's use
!qll IS THE NORMALIZED LIQUID WATER CONTENT (Sommeria and
!Deardorff (1977, eq 29a). rrp = 1/(sqrt(2*pi)) = 0.3989
eq1 = rrp*EXP( -0.5*q1k*q1k )
qll = MAX( cld(k)*q1k + eq1, 0.0 )
!ESTIMATED LIQUID WATER CONTENT (UNNORMALIZED)
ql (k) = alp(k)*sgm(k)*qll
q2p = xlvcp/exner(k)
pt = thl(k) +q2p*ql(k) ! potential temp
!qt is a THETA-V CONVERSION FOR TOTAL WATER (i.e., THETA-V = qt*THETA)
qt = 1.0 +p608*qw(k) -(1.+p608)*ql(k)
rac = alp(k)*( cld(k)-qll*eq1 )*( q2p*qt-(1.+p608)*pt )
!BUOYANCY FACTORS: wherever vt and vq are used, there is a
!"+1" and "+tv0", respectively, so these are subtracted out here.
!vt is unitless and vq has units of K.
vt(k) = qt-1.0 -rac*bet(k)
vq(k) = p608*pt-tv0 +rac
ELSE IF ( bl_mynn_cloudpdf == 2 .OR. bl_mynn_cloudpdf == -2) THEN
! JAYMES- this option added 8 May 2015
! The cloud water formulations are taken from CB02, Eq. 8.
! "fng" represents the non-Gaussian contribution to the liquid
! water flux; these formulations are from Cuijpers and Bechtold
! (1995), Eq. 7. CB95 also draws from Bechtold et al. 1995,
! hereafter BCMT95
IF (q1k < 0.) THEN
ql (k) = sgm(k)*EXP(1.2*q1k-1)
ELSE IF (q1k > 2.) THEN
ql (k) = sgm(k)*q1k
ELSE
ql (k) = sgm(k)*(EXP(-1.) + 0.66*q1k + 0.086*q1k**2)
ENDIF
!Next, adjust our initial estimates of cldfra and ql based
!on tropopause-height and PBLH considerations
!JAYMES: added 4 Nov 2016
if ((cld(k) .gt. 0.) .or. (ql(k) .gt. 0.)) then
if (k .le. k_tropo) then
!At and below tropopause: impose an upper limit on ql; assume that
!a maximum of 0.5 percent supersaturation in water vapor can be
!available for cloud production
ql_limit = 0.005 * qsat_blend( th(k)*exner(k), p(k) )
ql(k) = MIN( ql(k), ql_limit )
else
!Above tropopause: eliminate subgrid clouds from CB scheme
cld(k) = 0.
ql(k) = 0.
endif
endif
!Buoyancy-flux-related calculations follow...
! "Fng" represents the non-Gaussian transport factor
! (non-dimensional) from from Bechtold et al. 1995
! (hereafter BCMT95), section 3(c). Their suggested
! forms for Fng (from their Eq. 20) are:
!IF (q1k < -2.) THEN
! Fng = 2.-q1k
!ELSE IF (q1k > 0.) THEN
! Fng = 1.
!ELSE
! Fng = 1.-1.5*q1k
!ENDIF
! For purposes of the buoyancy flux in stratus, we will use Fng = 1
Fng = 1.
xl = xl_blend
(t)
bb = b(k)*t/th(k) ! bb is "b" in BCMT95. Their "b" differs from
! "b" in CB02 (i.e., b(k) above) by a factor
! of T/theta. Strictly, b(k) above is formulated in
! terms of sat. mixing ratio, but bb in BCMT95 is
! cast in terms of sat. specific humidity. The
! conversion is neglected here.
qww = 1.+0.61*qw(k)
alpha = 0.61*th(k)
beta = (th(k)/t)*(xl/cp) - 1.61*th(k)
vt(k) = qww - cld(k)*beta*bb*Fng - 1.
vq(k) = alpha + cld(k)*beta*a(k)*Fng - tv0
! vt and vq correspond to beta-theta and beta-q, respectively,
! in NN09, Eq. B8. They also correspond to the bracketed
! expressions in BCMT95, Eq. 15, since (s*ql/sigma^2) = cldfra*Fng
! The "-1" and "-tv0" terms are included for consistency with
! the legacy vt and vq formulations (above).
! increase the cloud fraction estimate below PBLH+1km
if (zagl .lt. PBLH2+1000.) cld(k) = MIN( 1., 1.8*cld(k) )
!return a cloud condensate and cloud fraction for icloud_bl option:
cldfra_bl1D(k) = cld(k)
qc_bl1D(k) = ql(k)
ENDIF !end cloudPDF option
!FOR TESTING PURPOSES ONLY, ISOLATE ON THE MASS-CLOUDS.
IF (bl_mynn_cloudpdf .LT. 0) THEN
cldfra_bl1D(k) = 0.0
qc_bl1D(k) = 0.0
ENDIF
!To avoid FPE in radiation driver, when these two quantities are multiplied by eachother,
! add limit to qc_bl and cldfra_bl:
IF (QC_BL1D(k) < 1E-6 .AND. ABS(CLDFRA_BL1D(k)) > 0.01) QC_BL1D(k)= 1E-6
IF (CLDFRA_BL1D(k) < 1E-2)THEN
CLDFRA_BL1D(k)=0.
QC_BL1D(k)=0.
ENDIF
END DO
!
cld(kte) = cld(kte-1)
ql(kte) = ql(kte-1)
vt(kte) = vt(kte-1)
vq(kte) = vq(kte-1)
qc_bl1D(kte)=0.
cldfra_bl1D(kte)=0.
RETURN
END SUBROUTINE mym_condensation
! ==================================================================
SUBROUTINE mynn_tendencies(kts,kte, & 1,13
&levflag,grav_settling, &
&delt,dz, &
&u,v,th,tk,qv,qc,qi,qni,qnc, &
&p,exner, &
&thl,sqv,sqc,sqi,sqw, &
&ust,flt,flq,flqv,flqc,wspd,qcg, &
&uoce,voce, &
&tsq,qsq,cov, &
&tcd,qcd, &
&dfm,dfh,dfq, &
&Du,Dv,Dth,Dqv,Dqc,Dqi,Dqni, &!Dqnc, &
&vdfg1, &
&s_aw,s_awthl,s_awqt,s_awqv,s_awqc, &
&s_awu,s_awv, &
&FLAG_QI,FLAG_QNI,FLAG_QC,FLAG_QNC, &
&cldfra_bl1d, &
&bl_mynn_cloudmix, &
&bl_mynn_mixqt, &
&bl_mynn_edmf, &
&bl_mynn_edmf_mom )
!-------------------------------------------------------------------
INTEGER, INTENT(in) :: kts,kte
INTEGER, INTENT(in) :: grav_settling,levflag
INTEGER, INTENT(in) :: bl_mynn_cloudmix,bl_mynn_mixqt,&
bl_mynn_edmf,bl_mynn_edmf_mom
LOGICAL, INTENT(IN) :: FLAG_QI,FLAG_QNI,FLAG_QC,FLAG_QNC
!! grav_settling = 1 or 2 for gravitational settling of droplets
!! grav_settling = 0 otherwise
! thl - liquid water potential temperature
! qw - total water
! dfm,dfh,dfq - as above
! flt - surface flux of thl
! flq - surface flux of qw
REAL,DIMENSION(kts:kte+1), INTENT(in) :: s_aw,s_awthl,s_awqt,&
s_awqv,s_awqc,s_awu,s_awv
REAL, DIMENSION(kts:kte), INTENT(in) :: u,v,th,tk,qv,qc,qi,qni,qnc,&
&p,exner,dfq,dz,tsq,qsq,cov,tcd,qcd,cldfra_bl1d
REAL, DIMENSION(kts:kte), INTENT(inout) :: thl,sqw,sqv,sqc,sqi,&
&dfm,dfh
REAL, DIMENSION(kts:kte), INTENT(inout) :: du,dv,dth,dqv,dqc,dqi,&
&dqni !,dqnc
REAL, INTENT(IN) :: delt,ust,flt,flq,flqv,flqc,wspd,uoce,voce,qcg
! REAL, INTENT(IN) :: delt,ust,flt,flq,qcg,&
! &gradu_top,gradv_top,gradth_top,gradqv_top
!local vars
REAL, DIMENSION(kts:kte) :: dtz,vt,vq,dfhc,dfmc !Kh for clouds (Pr < 2)
REAL, DIMENSION(kts:kte) :: sqv2,sqc2,sqi2,sqw2,qni2 !,qnc2 !AFTER MIXING
REAL, DIMENSION(1:kte-kts+1) :: a,b,c,d
REAL :: rhs,gfluxm,gfluxp,dztop,maxdfh,mindfh
REAL :: grav_settling2,vdfg1 !Katata-fogdes
REAL :: t,esat,qsl,onoff
INTEGER :: k,kk,nz
nz=kte-kts+1
dztop=.5*(dz(kte)+dz(kte-1))
! REGULATE THE MOMENTUM MIXING FROM THE MASS-FLUX SCHEME (on or off)
IF (bl_mynn_edmf_mom == 0) THEN
onoff=0.0
ELSE
onoff=1.0
ENDIF
! Note that s_awu and s_awv already come in as 0.0 if bl_mynn_edmf_mom == 0, so
! we only need to zero-out the MF diffusivity term
maxdfh=maxval(dfh(1:15))
mindfh=maxdfh*0.01
DO k=kts,kte
dtz(k)=delt/dz(k)
IF (dfm(k) > dfh(k)) THEN
!in stable regime only, limit Prandtl number to < 2 within clouds
IF (qc(k) > 1.e-6 .OR. &
qi(k) > 1.e-6 .OR. &
cldfra_bl1D(k) > 0.05 ) THEN
dfh(k)= MAX(dfh(k),dfm(k)*0.5)
ENDIF
ENDIF
!add small minimum Km & Kh in MF updrafts for edmf2
IF(bl_mynn_edmf==2 .AND. k > 1 .AND. s_aw(k)>0.0) THEN
dfh(k)=MAX(mindfh,dfh(k))
dfm(k)=MAX(mindfh,dfm(k))
ENDIF
ENDDO
!!============================================
!! u
!!============================================
k=kts
a(1)=0.
b(1)=1. + dtz(k)*(dfm(k+1)+ust**2/wspd) - 0.5*dtz(k)*s_aw(k+1)*onoff
c(1)=-dtz(k)*dfm(k+1) - 0.5*dtz(k)*s_aw(k+1)*onoff
d(1)=u(k) + dtz(k)*uoce*ust**2/wspd - dtz(k)*s_awu(k+1)*onoff
!! a(1)=0.
!! b(1)=1.+dtz(k)*dfm(k+1)
!! c(1)=-dtz(k)*dfm(k+1)
!! d(1)=u(k)*(1.-ust**2/wspd*dtz(k))
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*dfm(k) + 0.5*dtz(k)*s_aw(k)*onoff
b(kk)=1. + dtz(k)*(dfm(k)+dfm(k+1)) + 0.5*dtz(k)*(s_aw(k)-s_aw(k+1))*onoff
c(kk)=-dtz(k)*dfm(k+1) - 0.5*dtz(k)*s_aw(k+1)*onoff
d(kk)=u(k) + dtz(k)*(s_awu(k)-s_awu(k+1))*onoff
ENDDO
!! no flux at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=0.
!! specified gradient at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=gradu_top*dztop
!! prescribed value
a(nz)=0
b(nz)=1.
c(nz)=0.
d(nz)=u(kte)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
du(k)=(d(k-kts+1)-u(k))/delt
ENDDO
!!============================================
!! v
!!============================================
k=kts
a(1)=0.
b(1)=1. + dtz(k)*(dfm(k+1)+ust**2/wspd) - 0.5*dtz(k)*s_aw(k+1)*onoff
c(1)=-dtz(k)*dfm(k+1) - 0.5*dtz(k)*s_aw(k+1)*onoff
! d(1)=v(k)
d(1)=v(k) + dtz(k)*voce*ust**2/wspd - dtz(k)*s_awv(k+1)*onoff
!! a(1)=0.
!! b(1)=1.+dtz(k)*dfm(k+1)
!! c(1)=-dtz(k)*dfm(k+1)
!! d(1)=v(k)*(1.-ust**2/wspd*dtz(k))
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*dfm(k) + 0.5*dtz(k)*s_aw(k)*onoff
b(kk)=1. + dtz(k)*(dfm(k)+dfm(k+1)) + 0.5*dtz(k)*(s_aw(k)-s_aw(k+1))*onoff
c(kk)=-dtz(k)*dfm(k+1) - 0.5*dtz(k)*s_aw(k+1)*onoff
d(kk)=v(k) + dtz(k)*(s_awv(k)-s_awv(k+1))*onoff
ENDDO
!! no flux at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=0.
!! specified gradient at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=gradv_top*dztop
!! prescribed value
a(nz)=0
b(nz)=1.
c(nz)=0.
d(nz)=v(kte)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
dv(k)=(d(k-kts+1)-v(k))/delt
ENDDO
!!============================================
!! thl
!! NOTE: currently, gravitational settling is removed
!!============================================
k=kts
a(1)=0.
b(1)=1.+dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
c(1)=-dtz(k)*(dfh(k+1) + 0.5*s_aw(k+1))
rhs= tcd(k)
d(1)=thl(k) + dtz(k)*flt + rhs*delt -dtz(1)*s_awthl(kts+1)
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*(dfh(k) - 0.5*s_aw(k))
b(kk)=1.+dtz(k)*(dfh(k)+dfh(k+1) + 0.5*(s_aw(k)-s_aw(k+1)))
c(kk)=-dtz(k)*(dfh(k+1) + 0.5*s_aw(k+1))
rhs= tcd(k)
d(kk)=thl(k) + rhs*delt + dtz(k)*(s_awthl(k)-s_awthl(k+1))
ENDDO
!! no flux at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=0.
!! specified gradient at the top
!assume gradthl_top=gradth_top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=gradth_top*dztop
!! prescribed value
a(nz)=0.
b(nz)=1.
c(nz)=0.
d(nz)=thl(kte)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
thl(k)=d
(k-kts+1)
ENDDO
IF (bl_mynn_mixqt > 0) THEN
!============================================
! MIX total water (sqw = sqc + sqv + sqi)
! NOTE: no total water tendency is output; instead, we must calculate
! the saturation specific humidity and then
! subtract out the moisture excess (sqc & sqi)
!============================================
k=kts
a(1)=0.
b(1)=1.+dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
c(1)= -dtz(k)*(dfh(k+1) + 0.5*s_aw(k+1))
rhs= qcd(k) !+ (gfluxp - gfluxm)/dz(k)&
d(1)=sqw(k) + dtz(k)*flq + rhs*delt - dtz(k)*s_awqt(k+1)
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*(dfh(k) - 0.5*s_aw(k))
b(kk)=1.+dtz(k)*(dfh(k)+dfh(k+1) + 0.5*(s_aw(k)-s_aw(k+1)))
c(kk)=-dtz(k)*(dfh(k+1) + 0.5*s_aw(k+1))
rhs= qcd(k)
d(kk)=sqw(k) + rhs*delt + dtz(k)*(s_awqt(k)-s_awqt(k+1))
ENDDO
!! no flux at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=0.
!! specified gradient at the top
!assume gradqw_top=gradqv_top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=gradqv_top*dztop
!! prescribed value
a(nz)=0.
b(nz)=1.
c(nz)=0.
d(nz)=sqw(kte)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
sqw2(k)=d
(k-kts+1)
ENDDO
ELSE
sqw2=sqw
ENDIF
IF (bl_mynn_mixqt == 0) THEN
!============================================
! cloud water ( sqc ). If mixing total water (bl_mynn_mixqt > 0),
! then sqc will be backed out of saturation check (below).
!============================================
IF (bl_mynn_cloudmix > 0 .AND. FLAG_QC) THEN
k=kts
a(1)=0.
b(1)=1.+dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
c(1)=-dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
rhs = qcd(k)
d(1)=sqc(k) + dtz(k)*flqc + rhs*delt -dtz(k)*s_awqc(k+1)
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*dfh(k) + 0.5*dtz(k)*s_aw(k)
b(kk)=1.+dtz(k)*(dfh(k)+dfh(k+1)) + 0.5*dtz(k)*(s_aw(k)-s_aw(k+1))
c(kk)=-dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
rhs = qcd(k)
d(kk)=sqc(k) + rhs*delt + dtz(k)*(s_awqc(k)-s_awqc(k+1))
ENDDO
! prescribed value
a(nz)=0.
b(nz)=1.
c(nz)=0.
d(nz)=sqc(kte)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
sqc2(k)=d
(k-kts+1)
ENDDO
ELSE
!If not mixing clouds, set "updated" array equal to original array
sqc2=sqc
ENDIF
ENDIF
IF (bl_mynn_mixqt == 0) THEN
!============================================
! MIX WATER VAPOR ONLY ( sqv ). If mixing total water (bl_mynn_mixqt > 0),
! then sqv will be backed out of saturation check (below).
!============================================
k=kts
a(1)=0.
b(1)=1.+dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
c(1)=-dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
d(1)=sqv(k) + dtz(k)*flqv + qcd(k)*delt - dtz(k)*s_awqv(k+1) !note: using qt, not qv...
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*dfh(k) + 0.5*dtz(k)*s_aw(k)
b(kk)=1.+dtz(k)*(dfh(k)+dfh(k+1)) + 0.5*dtz(k)*(s_aw(k)-s_aw(k+1))
c(kk)=-dtz(k)*dfh(k+1) - 0.5*dtz(k)*s_aw(k+1)
d(kk)=sqv(k) + qcd(k)*delt + dtz(k)*(s_awqv(k)-s_awqv(k+1))
ENDDO
! no flux at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=0.
! specified gradient at the top
! assume gradqw_top=gradqv_top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=gradqv_top*dztop
! prescribed value
a(nz)=0.
b(nz)=1.
c(nz)=0.
d(nz)=sqv(kte)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
sqv2(k)=d
(k-kts+1)
ENDDO
ELSE
sqv2=sqv
ENDIF
!============================================
! MIX CLOUD ICE ( sqi )
!============================================
IF (bl_mynn_cloudmix > 0 .AND. FLAG_QI) THEN
k=kts
a(1)=0.
b(1)=1.+dtz(k)*dfh(k+1)
c(1)=-dtz(k)*dfh(k+1)
d(1)=sqi(k) !+ qcd(k)*delt !should we have qcd for ice???
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*dfh(k)
b(kk)=1.+dtz(k)*(dfh(k)+dfh(k+1))
c(kk)=-dtz(k)*dfh(k+1)
d(kk)=sqi(k) !+ qcd(k)*delt
ENDDO
!! no flux at the top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=0.
!! specified gradient at the top
!assume gradqw_top=gradqv_top
! a(nz)=-1.
! b(nz)=1.
! c(nz)=0.
! d(nz)=gradqv_top*dztop
!! prescribed value
a(nz)=0.
b(nz)=1.
c(nz)=0.
d(nz)=sqi(kte)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
sqi2(k)=d
(k-kts+1)
ENDDO
ELSE
sqi2=sqi
ENDIF
!!============================================
!! cloud ice number concentration (qni)
!!============================================
! diasbled this since scalar_pblmix option can be invoked instead
!IF (bl_mynn_cloudmix > 0 .AND. FLAG_QNI) THEN
!
! k=kts
!
! a(1)=0.
! b(1)=1.+dtz(k)*dfh(k+1)
! c(1)=-dtz(k)*dfh(k+1)
!
! rhs = qcd(k)
!
! d(1)=qni(k) !+ dtz(k)*flqc + rhs*delt
!
! DO k=kts+1,kte-1
! kk=k-kts+1
! a(kk)=-dtz(k)*dfh(k)
! b(kk)=1.+dtz(k)*(dfh(k)+dfh(k+1))
! c(kk)=-dtz(k)*dfh(k+1)
!
! rhs = qcd(k)
! d(kk)=qni(k) !+ rhs*delt
!
! ENDDO
!
!! prescribed value
! a(nz)=0.
! b(nz)=1.
! c(nz)=0.
! d(nz)=qni(kte)
!
! CALL tridiag(nz,a,b,c,d)
!
! DO k=kts,kte
! qni2(k)=d(k-kts+1)
! ENDDO
!ELSE
qni2=qni
!ENDIF
!!============================================
!! Compute tendencies and convert to mixing ratios for WRF.
!! Note that the momentum tendencies are calculated above.
!!============================================
DO k=kts,kte
IF (bl_mynn_mixqt > 0) THEN
t = th(k)*exner(k)
!SATURATED VAPOR PRESSURE
esat=esat_blend
(t)
!SATURATED SPECIFIC HUMIDITY
qsl=ep_2*esat/(p(k)-ep_3*esat)
!IF (qsl >= sqw2(k)) THEN !unsaturated
! sqv2(k) = MAX(0.0,sqw2(k))
! sqi2(k) = MAX(0.0,sqi2(k))
! sqc2(k) = MAX(0.0,sqw2(k) - sqv2(k) - sqi2(k))
!ELSE !saturated
IF (FLAG_QI) THEN
!sqv2(k) = qsl
sqi2(k) = MAX(0., sqi2(k))
sqc2(k) = MAX(0., sqw2(k) - sqi2(k) - qsl) !updated cloud water
sqv2(k) = MAX(0., sqw2(k) - sqc2(k) - sqi2(k)) !updated water vapor
ELSE
!sqv2(k) = qsl
sqi2(k) = 0.0
sqc2(k) = MAX(0., sqw2(k) - qsl) !updated cloud water
sqv2(k) = MAX(0., sqw2(k) - sqc2(k)) ! updated water vapor
ENDIF
!ENDIF
ENDIF
!=====================
! WATER VAPOR TENDENCY
!=====================
Dqv(k)=(sqv2(k)/(1.-sqv2(k)) - qv(k))/delt
!IF(-Dqv(k) > qv(k)) Dqv(k)=-qv(k)
!=====================
! CLOUD WATER TENDENCY
!=====================
!qc fog settling tendency is now computed in module_bl_fogdes.F, so
!sqc should only be changed by eddy diffusion or mass-flux.
!print*,"FLAG_QC:",FLAG_QC
IF (bl_mynn_cloudmix > 0 .AND. FLAG_QC) THEN
Dqc(k)=(sqc2(k)/(1.-sqc2(k)) - qc(k))/delt
IF(Dqc(k)*delt + qc(k) < 0.) THEN
!WRITE ( mynn_message , FMT='(A,5(F8.6,A1),F6.1)' ) &
!' MYNN; neg qc: ',qsl,' ',sqw2(k),' ',sqi2(k),' ',sqc2(k),' ',qc(k),' ',tk(k)
!CALL wrf_debug ( 0 , mynn_message )
Dqc(k)=-qc(k)/delt
ENDIF
!REMOVED MIXING OF QNC - PERFORMED IN THE SCALAR_PBLMIX OPTION
!IF (FLAG_QNC) THEN
! IF(sqc2(k)>1.e-9)qnc2(k)=MAX(qnc2(k),1.e6)
! Dqnc(k) = (qnc2(k)-qnc(k))/delt
! IF(Dqnc(k)*delt + qnc(k) < 0.)Dqnc(k)=-qnc(k)/delt
!ELSE
! Dqnc(k) = 0.
!ENDIF
ELSE
Dqc(k)=0.
!Dqnc(k)=0.
ENDIF
!===================
! CLOUD ICE TENDENCY
!===================
IF (bl_mynn_cloudmix > 0 .AND. FLAG_QI) THEN
Dqi(k)=(sqi2(k)/(1.-sqi2(k)) - qi(k))/delt
IF(Dqi(k)*delt + qi(k) < 0.) THEN
!WRITE ( mynn_message , FMT='(A,5(F8.6,A1),F6.1)' ) &
!' MYNN; neg qi; ',qsl,' ',sqw2(k),' ',sqi2(k),' ',sqc2(k),' ',qi(k),' ',tk(k)
!CALL wrf_debug ( 0 , mynn_message )
Dqi(k)=-qi(k)/delt
ENDIF
!REMOVED MIXING OF QNI - PERFORMED IN THE SCALAR_PBLMIX OPTION
!SET qni2 = qni above, so all tendencies are zero
IF (FLAG_QNI) THEN
Dqni(k)=(qni2(k)-qni(k))/delt
IF(Dqni(k)*delt + qni(k) < 0.)Dqni(k)=-qni(k)/delt
ELSE
Dqni(k)=0.
ENDIF
ELSE
Dqi(k)=0.
Dqni(k)=0.
ENDIF
!===================
! THETA TENDENCY
!===================
IF (FLAG_QI) THEN
Dth(k)=(thl(k) + xlvcp/exner(k)*sqc(k) &
& + xlscp/exner(k)*sqi(k) &
& - th(k))/delt
!Use form from Tripoli and Cotton (1981) with their
!suggested min temperature to improve accuracy:
!Dth(k)=(thl(k)*(1.+ xlvcp/MAX(tk(k),TKmin)*sqc2(k) &
! & + xlscp/MAX(tk(k),TKmin)*sqi2(k)) &
! & - th(k))/delt
ELSE
Dth(k)=(thl(k)+xlvcp/exner(k)*sqc2(k) - th(k))/delt
!Use form from Tripoli and Cotton (1981) with their
!suggested min temperature to improve accuracy.
!Dth(k)=(thl(k)*(1.+ xlvcp/MAX(tk(k),TKmin)*sqc2(k)) &
!& - th(k))/delt
ENDIF
ENDDO
END SUBROUTINE mynn_tendencies
! ==================================================================
#if (WRF_CHEM == 1)
SUBROUTINE mynn_mix_chem(kts,kte, & 1,2
levflag,grav_settling, &
delt,dz, &
nchem, kdvel, ndvel, num_vert_mix, &
chem1, vd1, &
qni,qnc, &
p,exner, &
thl,sqv,sqc,sqi,sqw, &
ust,flt,flq,flqv,flqc,wspd,qcg, &
uoce,voce, &
tsq,qsq,cov, &
tcd,qcd, &
dfm,dfh,dfq, &
s_awchem, &
bl_mynn_cloudmix)
!-------------------------------------------------------------------
INTEGER, INTENT(in) :: kts,kte
INTEGER, INTENT(in) :: grav_settling,levflag
INTEGER, INTENT(in) :: bl_mynn_cloudmix
REAL, DIMENSION(kts:kte), INTENT(IN) :: qni,qnc,&
&p,exner,dfm,dfh,dfq,dz,tsq,qsq,cov,tcd,qcd
REAL, DIMENSION(kts:kte), INTENT(INOUT) :: thl,sqw,sqv,sqc,sqi
REAL, INTENT(IN) :: delt,ust,flt,flq,flqv,flqc,wspd,uoce,voce,qcg
INTEGER, INTENT(IN ) :: nchem, kdvel, ndvel, num_vert_mix
REAL, DIMENSION( kts:kte, nchem ), INTENT(INOUT) :: chem1
REAL, DIMENSION( kts:kte+1,nchem), INTENT(IN) :: s_awchem
REAL, DIMENSION( ndvel ), INTENT(INOUT) :: vd1
!local vars
REAL, DIMENSION(kts:kte) :: dtz,vt,vq
REAL, DIMENSION(1:kte-kts+1) :: a,b,c,d
REAL :: rhs,gfluxm,gfluxp,dztop
REAL :: t,esl,qsl
INTEGER :: k,kk,nz
INTEGER :: ic ! Chemical array loop index
REAL, DIMENSION( kts:kte, nchem ) :: chem_new
nz=kte-kts+1
dztop=.5*(dz(kte)+dz(kte-1))
DO k=kts,kte
dtz(k)=delt/dz(k)
ENDDO
!============================================
! Patterned after mixing of water vapor in mynn_tendencies.
!============================================
DO ic = 1,nchem
k=kts
a(1)=0.
b(1)=1.+dtz(k)*dfh(k+1)
c(1)=-dtz(k)*dfh(k+1)
! d(1)=sqv(k) + dtz(k)*flqv + qcd(k)*delt
d(1)=chem1(k,ic) + dtz(k) * (-1.0) * vd1(ic) * chem1(1,ic)
DO k=kts+1,kte-1
kk=k-kts+1
a(kk)=-dtz(k)*dfh(k)
b(kk)=1.+dtz(k)*(dfh(k)+dfh(k+1))
c(kk)=-dtz(k)*dfh(k+1)
! d(kk)=chem1(k,ic) + qcd(k)*delt
d(kk)=chem1(k,ic) + rhs*delt + dtz(k)*(s_awchem(k,ic)-s_awchem(k+1,ic))
ENDDO
! prescribed value at top
a(nz)=0.
b(nz)=1.
c(nz)=0.
d(nz)=chem1(kte,ic)
CALL tridiag
(nz,a,b,c,d)
DO k=kts,kte
chem_new(k,ic)=d
(k-kts+1)
ENDDO
ENDDO
END SUBROUTINE mynn_mix_chem
#endif
! ==================================================================
SUBROUTINE retrieve_exchange_coeffs(kts,kte,& 1
&dfm,dfh,dfq,dz,&
&K_m,K_h,K_q)
!-------------------------------------------------------------------
INTEGER , INTENT(in) :: kts,kte
REAL, DIMENSION(KtS:KtE), INTENT(in) :: dz,dfm,dfh,dfq
REAL, DIMENSION(KtS:KtE), INTENT(out) :: &
&K_m, K_h, K_q
INTEGER :: k
REAL :: dzk
K_m(kts)=0.
K_h(kts)=0.
K_q(kts)=0.
DO k=kts+1,kte
dzk = 0.5 *( dz(k)+dz(k-1) )
K_m(k)=dfm(k)*dzk
K_h(k)=dfh(k)*dzk
K_q(k)=Sqfac*dfq(k)*dzk
ENDDO
END SUBROUTINE retrieve_exchange_coeffs
! ==================================================================
SUBROUTINE tridiag(n,a,b,c,d) 12,2
!! to solve system of linear eqs on tridiagonal matrix n times n
!! after Peaceman and Rachford, 1955
!! a,b,c,d - are vectors of order n
!! a,b,c - are coefficients on the LHS
!! d - is initially RHS on the output becomes a solution vector
!-------------------------------------------------------------------
INTEGER, INTENT(in):: n
REAL, DIMENSION(n), INTENT(in) :: a,b
REAL, DIMENSION(n), INTENT(inout) :: c,d
INTEGER :: i
REAL :: p
REAL, DIMENSION(n) :: q
c(n)=0.
q(1)=-c(1)/b(1)
d(1)=d
(1)/b(1)
DO i=2,n
p=1./(b(i)+a(i)*q(i-1))
q(i)=-c(i)*p
d(i)=(d(i)-a(i)*d(i-1))*p
ENDDO
DO i=n-1,1,-1
d(i)=d
(i)+q(i)*d(i+1)
ENDDO
END SUBROUTINE tridiag
! ==================================================================
SUBROUTINE mynn_bl_driver( & 1,14
&initflag,grav_settling, &
&delt,dz,dx,znt, &
&u,v,w,th,qv,qc,qi,qni,qnc, &
&p,exner,rho,T3D, &
&xland,ts,qsfc,qcg,ps, &
&ust,ch,hfx,qfx,rmol,wspd, &
&uoce,voce, & !ocean current
&vdfg, & !Katata-added for fog dep
&Qke,tke_pbl, &
&qke_adv,bl_mynn_tkeadvect, & !ACF for QKE advection
#if (WRF_CHEM == 1)
chem3d, vd3d, nchem, & ! WA 7/29/15 For WRF-Chem
kdvel, ndvel, num_vert_mix, &
#endif
&Tsq,Qsq,Cov, &
&RUBLTEN,RVBLTEN,RTHBLTEN, &
&RQVBLTEN,RQCBLTEN,RQIBLTEN, &
&RQNIBLTEN, &
&exch_h,exch_m, &
&Pblh,kpbl, &
&el_pbl, &
&dqke,qWT,qSHEAR,qBUOY,qDISS, & !JOE-TKE BUDGET
&wstar,delta, & !JOE-added for grims
&bl_mynn_tkebudget, &
&bl_mynn_cloudpdf,Sh3D, &
&bl_mynn_mixlength, &
&icloud_bl,qc_bl,cldfra_bl, &
&bl_mynn_edmf, &
&bl_mynn_edmf_mom,bl_mynn_edmf_tke, &
&bl_mynn_edmf_part, &
&bl_mynn_cloudmix,bl_mynn_mixqt, &
&edmf_a,edmf_w,edmf_qt, &
&edmf_thl,edmf_ent,edmf_qc, &
&spp_pbl,pattern_spp_pbl, &
&FLAG_QI,FLAG_QNI,FLAG_QC,FLAG_QNC &
&,IDS,IDE,JDS,JDE,KDS,KDE &
&,IMS,IME,JMS,JME,KMS,KME &
&,ITS,ITE,JTS,JTE,KTS,KTE)
!-------------------------------------------------------------------
INTEGER, INTENT(in) :: initflag
!INPUT NAMELIST OPTIONS:
INTEGER, INTENT(in) :: grav_settling
INTEGER, INTENT(in) :: bl_mynn_tkebudget
INTEGER, INTENT(in) :: bl_mynn_cloudpdf
INTEGER, INTENT(in) :: bl_mynn_mixlength
INTEGER, INTENT(in) :: bl_mynn_edmf
LOGICAL, INTENT(IN) :: bl_mynn_tkeadvect
INTEGER, INTENT(in) :: bl_mynn_edmf_mom
INTEGER, INTENT(in) :: bl_mynn_edmf_tke
INTEGER, INTENT(in) :: bl_mynn_edmf_part
INTEGER, INTENT(in) :: bl_mynn_cloudmix
INTEGER, INTENT(in) :: bl_mynn_mixqt
INTEGER, INTENT(in) :: icloud_bl
LOGICAL, INTENT(IN) :: FLAG_QI,FLAG_QNI,FLAG_QC,FLAG_QNC
INTEGER,INTENT(IN) :: &
& IDS,IDE,JDS,JDE,KDS,KDE &
&,IMS,IME,JMS,JME,KMS,KME &
&,ITS,ITE,JTS,JTE,KTS,KTE
! initflag > 0 for TRUE
! else for FALSE
! levflag : <>3; Level 2.5
! = 3; Level 3
! grav_settling = 1 when gravitational settling accounted for
! grav_settling = 0 when gravitational settling NOT accounted for
REAL, INTENT(in) :: delt,dx
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), INTENT(in) :: dz,&
&u,v,w,th,qv,p,exner,rho,T3D
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), OPTIONAL, INTENT(in)::&
&qc,qi,qni,qnc
REAL, DIMENSION(IMS:IME,JMS:JME), INTENT(in) :: xland,ust,&
&ch,rmol,ts,qsfc,qcg,ps,hfx,qfx, wspd,uoce,voce, vdfg,znt
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), INTENT(inout) :: &
&Qke,Tsq,Qsq,Cov, &
&tke_pbl, & !JOE-added for coupling (TKE_PBL = QKE/2)
&qke_adv !ACF for QKE advection
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), INTENT(inout) :: &
&RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN,RQCBLTEN,&
&RQIBLTEN,RQNIBLTEN !,RQNCBLTEN
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), INTENT(out) :: &
&exch_h,exch_m
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), OPTIONAL, INTENT(inout) :: &
& edmf_a,edmf_w,edmf_qt,edmf_thl,edmf_ent,edmf_qc
REAL, DIMENSION(IMS:IME,JMS:JME), INTENT(inout) :: &
&Pblh,wstar,delta !JOE-added for GRIMS
REAL, DIMENSION(IMS:IME,JMS:JME) :: &
&Psig_bl,Psig_shcu
INTEGER,DIMENSION(IMS:IME,JMS:JME),INTENT(INOUT) :: &
&KPBL
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), INTENT(inout) :: &
&el_pbl
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), INTENT(out) :: &
&qWT,qSHEAR,qBUOY,qDISS,dqke
! 3D budget arrays are not allocated when bl_mynn_tkebudget == 0.
! 1D (local) budget arrays are used for passing between subroutines.
REAL, DIMENSION(KTS:KTE) :: qWT1,qSHEAR1,qBUOY1,qDISS1,dqke1
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME) :: K_q,Sh3D
REAL, DIMENSION(IMS:IME,KMS:KME,JMS:JME), INTENT(inout) :: &
&qc_bl,cldfra_bl
REAL, DIMENSION(KTS:KTE) :: qc_bl1D,cldfra_bl1D,&
qc_bl1D_old,cldfra_bl1D_old
! WA 7/29/15 Mix chemical arrays
#if (WRF_CHEM == 1)
INTEGER, INTENT(IN ) :: nchem, kdvel, ndvel, num_vert_mix
REAL, DIMENSION( ims:ime, kms:kme, jms:jme, nchem ), INTENT(INOUT) :: chem3d
REAL, DIMENSION( ims:ime, kdvel, jms:jme, ndvel ), INTENT(IN) :: vd3d
REAL, DIMENSION( kts:kte, nchem ) :: chem1
REAL, DIMENSION( kts:kte+1, nchem ) :: s_awchem1
REAL, DIMENSION( ndvel ) :: vd1
INTEGER ic
#endif
!local vars
INTEGER :: ITF,JTF,KTF, IMD,JMD
INTEGER :: i,j,k
REAL, DIMENSION(KTS:KTE) :: thl,tl,sqv,sqc,sqi,sqw,&
&El, Dfm, Dfh, Dfq, Tcd, Qcd, Pdk, Pdt, Pdq, Pdc, &
&Vt, Vq, sgm
REAL, DIMENSION(KTS:KTE) :: thetav,sh,u1,v1,w1,p1,ex1,dz1,th1,tk1,rho1,&
& qke1,tsq1,qsq1,cov1,qv1,qi1,qc1,du1,dv1,dth1,dqv1,dqc1,dqi1, &
& k_m1,k_h1,k_q1,qni1,dqni1,qnc1 !,dqnc1
!JOE: mass-flux variables
REAL, DIMENSION(KTS:KTE) :: dth1mf,dqv1mf,dqc1mf,du1mf,dv1mf
REAL, DIMENSION(KTS:KTE) :: edmf_a1,edmf_w1,edmf_qt1,edmf_thl1,&
edmf_ent1,edmf_qc1
REAL,DIMENSION(KTS:KTE+1) :: s_aw1,s_awthl1,s_awqt1,&
s_awqv1,s_awqc1,s_awu1,s_awv1,s_awqke1
REAL, DIMENSION(KTS:KTE+1) :: zw
REAL :: cpm,sqcg,flt,flq,flqv,flqc,pmz,phh,exnerg,zet,&
&afk,abk,ts_decay,th_sfc
!JOE-add GRIMS parameters & variables
real,parameter :: d1 = 0.02, d2 = 0.05, d3 = 0.001
real,parameter :: h1 = 0.33333335, h2 = 0.6666667
REAL :: govrth, sflux, bfx0, wstar3, wm2, wm3, delb
!JOE-end GRIMS
INTEGER, SAVE :: levflag
! Stochastic fields
INTEGER, INTENT(IN) ::spp_pbl
REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), INTENT(IN),OPTIONAL ::pattern_spp_pbl
REAL, DIMENSION(KTS:KTE) :: rstoch_col
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
WRITE ( mynn_message , FMT='(A)' ) &
'in MYNN driver; at beginning'
CALL wrf_debug
( 0 , mynn_message )
ENDIF
!*** Begin debugging
IMD=(IMS+IME)/2
JMD=(JMS+JME)/2
!*** End debugging
JTF=MIN0(JTE,JDE-1)
ITF=MIN0(ITE,IDE-1)
KTF=MIN0(KTE,KDE-1)
levflag=mynn_level
IF (bl_mynn_edmf > 0) THEN
! setup random seed
!call init_random_seed
edmf_a(its:ite,kts:kte,jts:jte)=0.
edmf_w(its:ite,kts:kte,jts:jte)=0.
edmf_qt(its:ite,kts:kte,jts:jte)=0.
edmf_thl(its:ite,kts:kte,jts:jte)=0.
edmf_ent(its:ite,kts:kte,jts:jte)=0.
edmf_qc(its:ite,kts:kte,jts:jte)=0.
ENDIF
IF (initflag > 0) THEN
Sh3D(its:ite,kts:kte,jts:jte)=0.
el_pbl(its:ite,kts:kte,jts:jte)=0.
tsq(its:ite,kts:kte,jts:jte)=0.
qsq(its:ite,kts:kte,jts:jte)=0.
cov(its:ite,kts:kte,jts:jte)=0.
dqc1(kts:kte)=0.0
dqi1(kts:kte)=0.0
dqni1(kts:kte)=0.0
!dqnc1(kts:kte)=0.0
qc_bl1D(kts:kte)=0.0
cldfra_bl1D(kts:kte)=0.0
qc_bl1D_old(kts:kte)=0.0
cldfra_bl1D_old(kts:kte)=0.0
edmf_a1(kts:kte)=0.0
edmf_qc1(kts:kte)=0.0
sgm(kts:kte)=0.0
vt(kts:kte)=0.0
vq(kts:kte)=0.0
DO j=JTS,JTF
DO i=ITS,ITF
DO k=KTS,KTF
dz1(k)=dz(i,k,j)
u1(k) = u(i,k,j)
v1(k) = v(i,k,j)
w1(k) = w(i,k,j)
th1(k)=th(i,k,j)
tk1(k)=T3D(i,k,j)
rho1(k)=rho(i,k,j)
sqc(k)=qc(i,k,j)/(1.+qc(i,k,j))
sqv(k)=qv(i,k,j)/(1.+qv(i,k,j))
thetav(k)=th(i,k,j)*(1.+0.61*sqv(k))
IF (PRESENT(qi) .AND. FLAG_QI ) THEN
sqi(k)=qi(i,k,j)/(1.+qi(i,k,j))
sqw(k)=sqv(k)+sqc(k)+sqi(k)
thl(k)=th(i,k,j)- xlvcp/exner(i,k,j)*sqc(k) &
& - xlscp/exner(i,k,j)*sqi(k)
!Use form from Tripoli and Cotton (1981) with their
!suggested min temperature to improve accuracy.
!thl(k)=th(i,k,j)*(1.- xlvcp/MAX(tk1(k),TKmin)*sqc(k) &
! & - xlscp/MAX(tk1(k),TKmin)*sqi(k))
ELSE
sqi(k)=0.0
sqw(k)=sqv(k)+sqc(k)
thl(k)=th(i,k,j)-xlvcp/exner(i,k,j)*sqc(k)
!Use form from Tripoli and Cotton (1981) with their
!suggested min temperature to improve accuracy.
!thl(k)=th(i,k,j)*(1.- xlvcp/MAX(tk1(k),TKmin)*sqc(k))
ENDIF
IF (k==kts) THEN
zw(k)=0.
ELSE
zw(k)=zw(k-1)+dz(i,k-1,j)
ENDIF
exch_m(i,k,j)=0.
exch_h(i,k,j)=0.
K_q(i,k,j)=0.
qke(i,k,j)=0.1-MIN(zw(k)*0.001, 0.0) !for initial PBLH calc only
qke1(k)=qke(i,k,j)
el(k)=el_pbl(i,k,j)
sh(k)=Sh3D(i,k,j)
tsq1(k)=tsq(i,k,j)
qsq1(k)=qsq(i,k,j)
cov1(k)=cov(i,k,j)
if (spp_pbl==1) then
rstoch_col(k)=pattern_spp_pbl(i,k,j)
else
rstoch_col(k)=0.0
endif
IF ( bl_mynn_tkebudget == 1) THEN
!TKE BUDGET VARIABLES
qWT(i,k,j)=0.
qSHEAR(i,k,j)=0.
qBUOY(i,k,j)=0.
qDISS(i,k,j)=0.
dqke(i,k,j)=0.
ENDIF
ENDDO
zw(kte+1)=zw(kte)+dz(i,kte,j)
CALL GET_PBLH
(KTS,KTE,PBLH(i,j),thetav,&
& Qke1,zw,dz1,xland(i,j),KPBL(i,j))
IF (scaleaware > 0.) THEN
CALL SCALE_AWARE
(dx,PBLH(i,j),Psig_bl(i,j),Psig_shcu(i,j))
ELSE
Psig_bl(i,j)=1.0
Psig_shcu(i,j)=1.0
ENDIF
CALL mym_initialize
( &
&kts,kte, &
&dz1, zw, u1, v1, thl, sqv, &
&PBLH(i,j), th1, sh, &
&ust(i,j), rmol(i,j), &
&el, Qke1, Tsq1, Qsq1, Cov1, &
&Psig_bl(i,j), cldfra_bl1D, &
&bl_mynn_mixlength, &
&edmf_a1,edmf_qc1,bl_mynn_edmf,&
&spp_pbl,rstoch_col )
!UPDATE 3D VARIABLES
DO k=KTS,KTE !KTF
el_pbl(i,k,j)=el(k)
sh3d(i,k,j)=sh(k)
qke(i,k,j)=qke1(k)
tsq(i,k,j)=tsq1(k)
qsq(i,k,j)=qsq1(k)
cov(i,k,j)=cov1(k)
!ACF,JOE- initialize qke_adv array if using advection
IF (bl_mynn_tkeadvect) THEN
qke_adv(i,k,j)=qke1(k)
ENDIF
ENDDO
!*** Begin debugging
! k=kdebug
! IF(I==IMD .AND. J==JMD)THEN
! PRINT*,"MYNN DRIVER INIT: k=",1," sh=",sh(k)
! PRINT*," sqw=",sqw(k)," thl=",thl(k)," k_m=",exch_m(i,k,j)
! PRINT*," xland=",xland(i,j)," rmol=",rmol(i,j)," ust=",ust(i,j)
! PRINT*," qke=",qke(i,k,j)," el=",el_pbl(i,k,j)," tsq=",Tsq(i,k,j)
! PRINT*," PBLH=",PBLH(i,j)," u=",u(i,k,j)," v=",v(i,k,j)
! ENDIF
!*** End debugging
ENDDO
ENDDO
ENDIF ! end initflag
!ACF- copy qke_adv array into qke if using advection
IF (bl_mynn_tkeadvect) THEN
qke=qke_adv
ENDIF
DO j=JTS,JTF
DO i=ITS,ITF
DO k=KTS,KTF
!JOE-TKE BUDGET
IF ( bl_mynn_tkebudget == 1) THEN
dqke(i,k,j)=qke(i,k,j)
END IF
dz1(k)= dz(i,k,j)
u1(k) = u(i,k,j)
v1(k) = v(i,k,j)
w1(k) = w(i,k,j)
th1(k)= th(i,k,j)
tk1(k)=T3D(i,k,j)
rho1(k)=rho(i,k,j)
qv1(k)= qv(i,k,j)
qc1(k)= qc(i,k,j)
sqv(k)= qv(i,k,j)/(1.+qv(i,k,j))
sqc(k)= qc(i,k,j)/(1.+qc(i,k,j))
IF(icloud_bl > 0)cldfra_bl1D_old(k)=cldfra_bl(i,k,j)
IF(icloud_bl > 0)qc_bl1D_old(k)=qc_bl(i,k,j)
dqc1(k)=0.0
dqi1(k)=0.0
dqni1(k)=0.0
!dqnc1(k)=0.0
IF(PRESENT(qi) .AND. FLAG_QI)THEN
qi1(k)= qi(i,k,j)
sqi(k)= qi(i,k,j)/(1.+qi(i,k,j))
sqw(k)= sqv(k)+sqc(k)+sqi(k)
thl(k)= th(i,k,j) - xlvcp/exner(i,k,j)*sqc(k) &
& - xlscp/exner(i,k,j)*sqi(k)
!Use form from Tripoli and Cotton (1981) with their
!suggested min temperature to improve accuracy.
!thl(k)=th(i,k,j)*(1.- xlvcp/MAX(tk1(k),TKmin)*sqc(k) &
! & - xlscp/MAX(tk1(k),TKmin)*sqi(k))
ELSE
qi1(k)=0.0
sqi(k)=0.0
sqw(k)= sqv(k)+sqc(k)
thl(k)= th(i,k,j)-xlvcp/exner(i,k,j)*sqc(k)
!Use form from Tripoli and Cotton (1981) with their
!suggested min temperature to improve accuracy.
!thl(k)=th(i,k,j)*(1.- xlvcp/MAX(tk1(k),TKmin)*sqc(k))
ENDIF
IF (PRESENT(qni) .AND. FLAG_QNI ) THEN
qni1(k)=qni(i,k,j)
!print*,"MYNN: Flag_qni=",FLAG_QNI,qni(i,k,j)
ELSE
qni1(k)=0.0
ENDIF
IF (PRESENT(qnc) .AND. FLAG_QNC ) THEN
qnc1(k)=qnc(i,k,j)
!print*,"MYNN: Flag_qnc=",FLAG_QNC,qnc(i,k,j)
ELSE
qnc1(k)=0.0
ENDIF
thetav(k)=th(i,k,j)*(1.+0.608*sqv(k))
p1(k) = p(i,k,j)
ex1(k)= exner(i,k,j)
el(k) = el_pbl(i,k,j)
qke1(k)=qke(i,k,j)
sh(k) = sh3d(i,k,j)
tsq1(k)=tsq(i,k,j)
qsq1(k)=qsq(i,k,j)
cov1(k)=cov(i,k,j)
if (spp_pbl==1) then
rstoch_col(k)=pattern_spp_pbl(i,k,j)
else
rstoch_col(k)=0.0
endif
!edmf
edmf_a1(k)=0.0
edmf_qc1(k)=0.0
s_aw1(k)=0.
s_awthl1(k)=0.
s_awqt1(k)=0.
s_awqv1(k)=0.
s_awqc1(k)=0.
s_awu1(k)=0.
s_awv1(k)=0.
s_awqke1(k)=0.
#if (WRF_CHEM == 1)
! WA 7/29/15 Set up chemical arrays
DO ic = 1,nchem
chem1(k,ic) = chem3d(i,k,j,ic)
s_awchem1(k,ic)=0.
ENDDO
DO ic = 1,ndvel
IF (k == KTS) THEN
vd1(ic) = vd3d(i,1,j,ic)
ENDIF
ENDDO
#endif
IF (k==kts) THEN
zw(k)=0.
ELSE
zw(k)=zw(k-1)+dz(i,k-1,j)
ENDIF
ENDDO
zw(kte+1)=zw(kte)+dz(i,kte,j)
!EDMF
s_aw1(kte+1)=0.
s_awthl1(kte+1)=0.
s_awqt1(kte+1)=0.
s_awqv1(kte+1)=0.
s_awqc1(kte+1)=0.
s_awu1(kte+1)=0.
s_awv1(kte+1)=0.
s_awqke1(kte+1)=0.
#if (WRF_CHEM == 1)
DO ic = 1,nchem
s_awchem1(kte+1,ic)=0.
ENDDO
#endif
CALL GET_PBLH
(KTS,KTE,PBLH(i,j),thetav,&
& Qke1,zw,dz1,xland(i,j),KPBL(i,j))
IF (scaleaware > 0.) THEN
CALL SCALE_AWARE
(dx,PBLH(i,j),Psig_bl(i,j),Psig_shcu(i,j))
ELSE
Psig_bl(i,j)=1.0
Psig_shcu(i,j)=1.0
ENDIF
sqcg= 0.0 !JOE, it was: qcg(i,j)/(1.+qcg(i,j))
cpm=cp*(1.+0.84*qv(i,kts,j))
exnerg=(ps(i,j)/p1000mb)**rcp
!-----------------------------------------------------
!ORIGINAL CODE
!flt = hfx(i,j)/( rho(i,kts,j)*cpm ) &
! +xlvcp*ch(i,j)*(sqc(kts)/exner(i,kts,j) -sqcg/exnerg)
!flq = qfx(i,j)/ rho(i,kts,j) &
! -ch(i,j)*(sqc(kts) -sqcg )
!-----------------------------------------------------
! Katata-added - The deposition velocity of cloud (fog)
! water is used instead of CH.
flt = hfx(i,j)/( rho(i,kts,j)*cpm ) &
& +xlvcp*vdfg(i,j)*(sqc(kts)/exner(i,kts,j)- sqcg/exnerg)
flq = qfx(i,j)/ rho(i,kts,j) &
& -vdfg(i,j)*(sqc(kts) - sqcg )
flqv = qfx(i,j)/rho(i,kts,j)
flqc = -vdfg(i,j)*(sqc(kts) - sqcg )
th_sfc = ts(i,j)/ex1(kts)
zet = 0.5*dz(i,kts,j)*rmol(i,j)
if ( zet >= 0.0 ) then
pmz = 1.0 + (cphm_st-1.0) * zet
phh = 1.0 + cphh_st * zet
else
pmz = 1.0/ (1.0-cphm_unst*zet)**0.25 - zet
phh = 1.0/SQRT(1.0-cphh_unst*zet)
end if
!-- Estimate wstar & delta for GRIMS shallow-cu-------
govrth = g/th1(kts)
sflux = hfx(i,j)/rho(i,kts,j)/cpm + &
qfx(i,j)/rho(i,kts,j)*ep_1*th1(kts)
bfx0 = max(sflux,0.)
wstar3 = (govrth*bfx0*pblh(i,j))
wstar(i,j) = wstar3**h1
wm3 = wstar3 + 5.*ust(i,j)**3.
wm2 = wm3**h2
delb = govrth*d3*pblh(i,j)
delta(i,j) = min(d1*pblh(i,j) + d2*wm2/delb, 100.)
!-- End GRIMS-----------------------------------------
CALL mym_condensation
( kts,kte, &
&dx,dz1,thl,sqw,p1,ex1, &
&tsq1, qsq1, cov1, &
&Sh,el,bl_mynn_cloudpdf, &
&qc_bl1D,cldfra_bl1D, &
&PBLH(i,j),HFX(i,j), &
&Vt, Vq, th1, sgm )
IF (bl_mynn_edmf == 1) THEN
!PRINT*,"Calling StEM Mass-Flux: i= ",i," j=",j
CALL StEM_mf
( &
&kts,kte,delt,zw,dz1,p1, &
&bl_mynn_edmf_mom, &
&bl_mynn_edmf_tke, &
&u1,v1,w1,th1,thl,thetav,tk1, &
&sqw,sqv,sqc,qke1, &
&ex1,Vt,Vq,sgm, &
&ust(i,j),flt,flq,flqv,flqc, &
&PBLH(i,j),KPBL(i,j),DX, &
&xland(i,j),th_sfc, &
! now outputs - tendencies
! &,dth1mf,dqv1mf,dqc1mf,du1mf,dv1mf &
! outputs - updraft properties
& edmf_a1,edmf_w1,edmf_qt1, &
& edmf_thl1,edmf_ent1,edmf_qc1, &
! for the solver
& s_aw1,s_awthl1,s_awqt1, &
& s_awqv1,s_awqc1,s_awu1,s_awv1, &
& s_awqke1, &
#if (WRF_CHEM == 1)
& nchem,chem1,s_awchem1, &
#endif
& qc_bl1D,cldfra_bl1D, &
& FLAG_QI,FLAG_QC, &
& Psig_shcu(i,j), &
& spp_pbl,rstoch_col &
)
ELSEIF (bl_mynn_edmf == 2) THEN
CALL temf_mf
( &
&kts,kte,delt,zw,p1,ex1, &
&u1,v1,w1,th1,thl,thetav, &
&sqw,sqv,sqc,qke1, &
&ust(i,j),flt,flq,flqv,flqc, &
&hfx(i,j),qfx(i,j),ts(i,j), &
&pblh(i,j),rho1,dfh,dx,znt(i,j),ep_2, &
! outputs - updraft properties
& edmf_a1,edmf_w1,edmf_qt1, &
& edmf_thl1,edmf_ent1,edmf_qc1, &
! for the solver
& s_aw1,s_awthl1,s_awqt1, &
& s_awqv1,s_awqc1, &
& s_awu1,s_awv1,s_awqke1, &
#if (WRF_CHEM == 1)
& nchem,chem1,s_awchem1, &
#endif
& qc_bl1D,cldfra_bl1D &
&,FLAG_QI,FLAG_QC &
&,Psig_shcu(i,j) &
&,spp_pbl,rstoch_col &
&,i,j,ids,ide,jds,jde &
)
ENDIF
CALL mym_turbulence
( &
&kts,kte,levflag, &
&dz1, zw, u1, v1, thl, sqc, sqw, &
&qke1, tsq1, qsq1, cov1, &
&vt, vq, &
&rmol(i,j), flt, flq, &
&PBLH(i,j),th1, &
&Sh,el, &
&Dfm,Dfh,Dfq, &
&Tcd,Qcd,Pdk, &
&Pdt,Pdq,Pdc, &
&qWT1,qSHEAR1,qBUOY1,qDISS1, &
&bl_mynn_tkebudget, &
&Psig_bl(i,j),Psig_shcu(i,j), &
&cldfra_bl1D,bl_mynn_mixlength, &
&edmf_a1,edmf_qc1,bl_mynn_edmf, &
&spp_pbl,rstoch_col)
! IF (bl_mynn_edmf > 0) THEN
! !DEBUG
! DO k=kts,kte
! IF (s_aw1(k)<0. .OR. s_aw1(k)>0.5) THEN
! PRINT*,"After Mass-Flux: i= ",i," j=",j," k=",k
! PRINT*," s_aw1=",s_aw1(k)," s_awthl1=",s_awthl1(k)," s_awqt1=",s_awqt1(k)
! PRINT*," s_awu1=",s_awu1(k)," s_awv1=",s_awu1(k)
! ENDIF
! ENDDO
! ENDIF
IF (bl_mynn_edmf_part > 0 .AND. bl_mynn_edmf > 0) THEN
!Partition the fluxes from each component (ed & mf).
!Assume overlap of 50%: Reduce eddy diffusivities by 50% of the estimated
!area fraction of mass-flux scheme's updraft.
DO k=kts,kte
dfm(k)=dfm(k) * (1. - 0.5*edmf_a1(k))
dfh(k)=dfh(k) * (1. - 0.5*edmf_a1(k))
dfq(k)=dfq(k) * (1. - 0.5*edmf_a1(k))
ENDDO
ENDIF
CALL mym_predict
(kts,kte,levflag, &
&delt, dz1, &
&ust(i,j), flt, flq, pmz, phh, &
&el, dfq, pdk, pdt, pdq, pdc, &
&Qke1, Tsq1, Qsq1, Cov1, &
&s_aw1, s_awqke1, bl_mynn_edmf_tke)
CALL mynn_tendencies
(kts,kte, &
&levflag,grav_settling, &
&delt, dz1, &
&u1, v1, th1, tk1, qv1, qc1, qi1, &
&qni1,qnc1, &
&p1, ex1, thl, sqv, sqc, sqi, sqw,&
&ust(i,j),flt,flq,flqv,flqc, &
&wspd(i,j),qcg(i,j), &
&uoce(i,j),voce(i,j), &
&tsq1, qsq1, cov1, &
&tcd, qcd, &
&dfm, dfh, dfq, &
&Du1, Dv1, Dth1, Dqv1, &
&Dqc1, Dqi1, Dqni1, & !Dqnc1, &
&vdfg(i,j), & !JOE/Katata- fog deposition
! mass flux components
&s_aw1,s_awthl1,s_awqt1, &
&s_awqv1,s_awqc1,s_awu1,s_awv1, &
&FLAG_QI,FLAG_QNI,FLAG_QC,FLAG_QNC,&
&cldfra_bl1d, &
&bl_mynn_cloudmix, &
&bl_mynn_mixqt, &
&bl_mynn_edmf, &
&bl_mynn_edmf_mom)
#if (WRF_CHEM == 1)
IF (bl_mynn_mixchem == 1) THEN
CALL mynn_mix_chem
(kts,kte, &
levflag,grav_settling, &
delt, dz1, &
nchem, kdvel, ndvel, num_vert_mix, &
chem1, vd1, &
qni1,qnc1, &
p1, ex1, thl, sqv, sqc, sqi, sqw,&
ust(i,j),flt,flq,flqv,flqc, &
wspd(i,j),qcg(i,j), &
uoce(i,j),voce(i,j), &
tsq1, qsq1, cov1, &
tcd, qcd, &
&dfm, dfh, dfq, &
! mass flux components
& s_awchem1, &
&bl_mynn_cloudmix)
ENDIF
#endif
!
! add mass flux tendencies and calculate the new variables.
! Now done implicitly in the mynn_tendencies subroutine
! do k=kts,kte
! du1(k)=du1(k)+du1mf(k)
! dv1(k)=dv1(k)+dv1mf(k)
! dth1(k)=dth1(k)+dth1mf(k)
! dqv1(k)=dqv1(k)+dqv1mf(k)
! that is supposed to be done by bl_fogdes
! dqc1(k)=dqc1(k)+dqc1mf(k)
! enddo
CALL retrieve_exchange_coeffs
(kts,kte,&
&dfm, dfh, dfq, dz1,&
&K_m1, K_h1, K_q1)
!UPDATE 3D ARRAYS
DO k=KTS,KTF
exch_m(i,k,j)=K_m1(k)
exch_h(i,k,j)=K_h1(k)
K_q(i,k,j)=K_q1(k)
RUBLTEN(i,k,j)=du1(k)
RVBLTEN(i,k,j)=dv1(k)
RTHBLTEN(i,k,j)=dth1(k)
RQVBLTEN(i,k,j)=dqv1(k)
IF(bl_mynn_cloudmix > 0)THEN
IF (PRESENT(qc) .AND. FLAG_QC) RQCBLTEN(i,k,j)=dqc1(k)
IF (PRESENT(qi) .AND. FLAG_QI) RQIBLTEN(i,k,j)=dqi1(k)
!IF (PRESENT(qnc) .AND. FLAG_QNC) RQNCBLTEN(i,k,j)=dqnc1(k)
IF (PRESENT(qni) .AND. FLAG_QNI) RQNIBLTEN(i,k,j)=dqni1(k)
ELSE
IF (PRESENT(qc) .AND. FLAG_QC) RQCBLTEN(i,k,j)=0.
IF (PRESENT(qi) .AND. FLAG_QI) RQIBLTEN(i,k,j)=0.
!IF (PRESENT(qnc) .AND. FLAG_QNC) RQNCBLTEN(i,k,j)=0.
IF (PRESENT(qni) .AND. FLAG_QNI) RQNIBLTEN(i,k,j)=0.
ENDIF
IF(icloud_bl > 0)THEN
!make BL clouds scale aware - may already be done in mym_condensation
qc_bl(i,k,j)=qc_bl1D(k) !*Psig_shcu(i,j)
cldfra_bl(i,k,j)=cldfra_bl1D(k) !*Psig_shcu(i,j)
!DIAGNOSTIC-DECAY FOR SUBGRID-SCALE CLOUDS
IF (CLDFRA_BL(i,k,j) > cldfra_bl1D_old(k)) THEN
!KEEP UPDATED CLOUD FRACTION & MIXING RATIO
ELSE
!DECAY TIMESCALE FOR CALM CONDITION IS THE EDDY TURNOVER TIMESCALE, BUT FOR
!WINDY CONDITIONS, IT IS THE ADVECTIVE TIMESCALE. USE THE MINIMUM OF THE TWO.
ts_decay = MIN( 1800., 3.*dx/MAX(SQRT(u1(k)**2 + v1(k)**2), 1.0) )
cldfra_bl(i,k,j)= MAX(cldfra_bl1D(k), cldfra_bl1D_old(k)-(0.25*delt/ts_decay))
IF (cldfra_bl(i,k,j) > 0.1) THEN
IF (QC_BL(i,k,j) < 1E-5)QC_BL(i,k,j)= MAX(qc_bl1D_old(k), 1E-5)
ELSE
CLDFRA_BL(i,k,j)= 0.
QC_BL(i,k,j) = 0.
ENDIF
ENDIF
!Stochastic perturbations to cldfra_bl and qc_bl
if (spp_pbl==1) then
cldfra_bl(i,k,j)= cldfra_bl(i,k,j)*(1.0-rstoch_col(k))
IF ((cldfra_bl(i,k,j) > 1.0) .or. (cldfra_bl(i,k,j) < 0.0)) then
cldfra_bl(i,k,j)=MAX(MIN(cldfra_bl(i,k,j),1.0),0.0)
ENDIF
ENDIF
!Reapply checks on cldfra_bl and qc_bl to avoid FPEs in radiation driver
! when these two quantities are multiplied by eachother (they may have changed
! in the MF scheme:
IF (icloud_bl > 0) THEN
IF (QC_BL(i,k,j) < 1E-6 .AND. ABS(CLDFRA_BL(i,k,j)) > 0.1)QC_BL(i,k,j)= 1E-6
IF (CLDFRA_BL(i,k,j) < 1E-2)CLDFRA_BL(i,k,j)= 0.
ENDIF
ENDIF
el_pbl(i,k,j)=el(k)
qke(i,k,j)=qke1(k)
tsq(i,k,j)=tsq1(k)
qsq(i,k,j)=qsq1(k)
cov(i,k,j)=cov1(k)
sh3d(i,k,j)=sh(k)
IF ( bl_mynn_tkebudget == 1) THEN
dqke(i,k,j) = (qke1(k)-dqke(i,k,j))*0.5 !qke->tke
qWT(i,k,j) = qWT1(k)*delt
qSHEAR(i,k,j)= qSHEAR1(k)*delt
qBUOY(i,k,j) = qBUOY1(k)*delt
qDISS(i,k,j) = qDISS1(k)*delt
ENDIF
!update updraft properties
IF (bl_mynn_edmf > 0) THEN
edmf_a(i,k,j)=edmf_a1(k)
edmf_w(i,k,j)=edmf_w1(k)
edmf_qt(i,k,j)=edmf_qt1(k)
edmf_thl(i,k,j)=edmf_thl1(k)
edmf_ent(i,k,j)=edmf_ent1(k)
edmf_qc(i,k,j)=edmf_qc1(k)
ENDIF
!*** Begin debug prints
IF ( wrf_at_debug_level(3000) ) THEN
IF ( sh(k) < 0. .OR. sh(k)> 200.)print*,"**SUSPICIOUS VALUES AT: i,j,k=",i,j,k," sh=",sh(k)
IF ( qke(i,k,j) < -1. .OR. qke(i,k,j)> 200.)print*,"**SUSPICIOUS VALUES AT: i,j,k=",i,j,k," qke=",qke(i,k,j)
IF ( el_pbl(i,k,j) < 0. .OR. el_pbl(i,k,j)> 2000.)print*,"**SUSPICIOUS VALUES AT: i,j,k=",i,j,k," el_pbl=",el_pbl(i,k,j)
IF ( ABS(vt(k)) > 0.8 )print*,"**SUSPICIOUS VALUES AT: i,j,k=",i,j,k," vt=",vt(k)
IF ( ABS(vq(k)) > 6000.)print*,"**SUSPICIOUS VALUES AT: i,j,k=",i,j,k," vq=",vq(k)
IF ( exch_m(i,k,j) < 0. .OR. exch_m(i,k,j)> 2000.)print*,"**SUSPICIOUS VALUES AT: i,j,k=",i,j,k," exxch_m=",exch_m(i,k,j)
IF ( vdfg(i,j) < 0. .OR. vdfg(i,j)>5. )print*,"**SUSPICIOUS VALUES AT: i,j,k=",i,j,k," vdfg=",vdfg(i,j)
IF ( ABS(QFX(i,j))>.001)print*, "**SUSPICIOUS VALUES AT: i,j=",i,j," QFX=",QFX(i,j)
IF ( ABS(HFX(i,j))>1000.)print*, "**SUSPICIOUS VALUES AT: i,j=",i,j," HFX=",HFX(i,j)
IF (icloud_bl > 0) then
IF( cldfra_bl(i,k,j) < 0.0 .OR. cldfra_bl(i,k,j)> 1.)THEN
PRINT*,"**SUSPICIOUS VALUES: CLDFRA_BL=",cldfra_bl(i,k,j)," qc_bl=",QC_BL(i,k,j)
ENDIF
ENDIF
ENDIF
!*** End debug prints
ENDDO
!JOE-add tke_pbl for coupling w/shallow-cu schemes (TKE_PBL = QKE/2.)
! TKE_PBL is defined on interfaces, while QKE is at middle of layer.
tke_pbl(i,kts,j) = 0.5*MAX(qke(i,kts,j),1.0e-10)
DO k = kts+1,kte
afk = dz1(k)/( dz1(k)+dz1(k-1) )
abk = 1.0 -afk
tke_pbl(i,k,j) = 0.5*MAX(qke(i,k,j)*abk+qke(i,k-1,j)*afk,1.0e-3)
ENDDO
!*** Begin debugging
! IF(I==IMD .AND. J==JMD)THEN
! k=kdebug
! PRINT*,"MYNN DRIVER END: k=",1," sh=",sh(k)
! PRINT*," sqw=",sqw(k)," thl=",thl(k)," k_m=",k_m(i,k,j)
! PRINT*," xland=",xland(i,j)," rmol=",rmol(i,j)," ust=",ust(i,j)
! PRINT*," qke=",qke(i,k,j)," el=",el_pbl(i,k,j)," tsq=",tsq(i,k,j)
! PRINT*," PBLH=",PBLH(i,j)," u=",u(i,k,j)," v=",v(i,k,j)
! PRINT*," vq=",vq(k)," vt=",vt(k)," vdfg=",vdfg(i,j)
! ENDIF
!*** End debugging
ENDDO
ENDDO
!ACF copy qke into qke_adv if using advection
IF (bl_mynn_tkeadvect) THEN
qke_adv=qke
ENDIF
!ACF-end
END SUBROUTINE mynn_bl_driver
! ==================================================================
SUBROUTINE mynn_bl_init_driver( & 1
&RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN, &
&RQCBLTEN,RQIBLTEN & !,RQNIBLTEN,RQNCBLTEN &
&,QKE,TKE_PBL,EXCH_H &
! &,icloud_bl,qc_bl,cldfra_bl & !JOE-subgrid bl clouds
&,RESTART,ALLOWED_TO_READ,LEVEL &
&,IDS,IDE,JDS,JDE,KDS,KDE &
&,IMS,IME,JMS,JME,KMS,KME &
&,ITS,ITE,JTS,JTE,KTS,KTE)
!---------------------------------------------------------------
LOGICAL,INTENT(IN) :: ALLOWED_TO_READ,RESTART
INTEGER,INTENT(IN) :: LEVEL !,icloud_bl
INTEGER,INTENT(IN) :: IDS,IDE,JDS,JDE,KDS,KDE, &
& IMS,IME,JMS,JME,KMS,KME, &
& ITS,ITE,JTS,JTE,KTS,KTE
REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(INOUT) :: &
&RUBLTEN,RVBLTEN,RTHBLTEN,RQVBLTEN, &
&RQCBLTEN,RQIBLTEN,& !RQNIBLTEN,RQNCBLTEN &
&QKE,TKE_PBL,EXCH_H
! REAL,DIMENSION(IMS:IME,KMS:KME,JMS:JME),INTENT(INOUT) :: &
! &qc_bl,cldfra_bl
INTEGER :: I,J,K,ITF,JTF,KTF
JTF=MIN0(JTE,JDE-1)
KTF=MIN0(KTE,KDE-1)
ITF=MIN0(ITE,IDE-1)
IF(.NOT.RESTART)THEN
DO J=JTS,JTF
DO K=KTS,KTF
DO I=ITS,ITF
RUBLTEN(i,k,j)=0.
RVBLTEN(i,k,j)=0.
RTHBLTEN(i,k,j)=0.
RQVBLTEN(i,k,j)=0.
if( p_qc >= param_first_scalar ) RQCBLTEN(i,k,j)=0.
if( p_qi >= param_first_scalar ) RQIBLTEN(i,k,j)=0.
!if( p_qnc >= param_first_scalar ) RQNCBLTEN(i,k,j)=0.
!if( p_qni >= param_first_scalar ) RQNIBLTEN(i,k,j)=0.
!QKE(i,k,j)=0.
TKE_PBL(i,k,j)=0.
EXCH_H(i,k,j)=0.
! if(icloud_bl > 0) qc_bl(i,k,j)=0.
! if(icloud_bl > 0) cldfra_bl(i,k,j)=0.
ENDDO
ENDDO
ENDDO
ENDIF
mynn_level=level
END SUBROUTINE mynn_bl_init_driver
! ==================================================================
SUBROUTINE GET_PBLH(KTS,KTE,zi,thetav1D,qke1D,zw1D,dz1D,landsea,kzi) 3
!---------------------------------------------------------------
! NOTES ON THE PBLH FORMULATION
!
!The 1.5-theta-increase method defines PBL heights as the level at
!which the potential temperature first exceeds the minimum potential
!temperature within the boundary layer by 1.5 K. When applied to
!observed temperatures, this method has been shown to produce PBL-
!height estimates that are unbiased relative to profiler-based
!estimates (Nielsen-Gammon et al. 2008). However, their study did not
!include LLJs. Banta and Pichugina (2008) show that a TKE-based
!threshold is a good estimate of the PBL height in LLJs. Therefore,
!a hybrid definition is implemented that uses both methods, weighting
!the TKE-method more during stable conditions (PBLH < 400 m).
!A variable tke threshold (TKEeps) is used since no hard-wired
!value could be found to work best in all conditions.
!---------------------------------------------------------------
INTEGER,INTENT(IN) :: KTS,KTE
REAL, INTENT(OUT) :: zi
REAL, INTENT(IN) :: landsea
REAL, DIMENSION(KTS:KTE), INTENT(IN) :: thetav1D, qke1D, dz1D
REAL, DIMENSION(KTS:KTE+1), INTENT(IN) :: zw1D
!LOCAL VARS
REAL :: PBLH_TKE,qtke,qtkem1,wt,maxqke,TKEeps,minthv
REAL :: delt_thv !delta theta-v; dependent on land/sea point
REAL, PARAMETER :: sbl_lim = 250. !200. !upper limit of stable BL height (m).
REAL, PARAMETER :: sbl_damp = 500. !400. !transition length for blending (m).
INTEGER :: I,J,K,kthv,ktke,kzi,kzi2
!ADD KPBL (kzi) for coupling to some Cu schemes, initialize at k=2
!kzi2 is the TKE-based part of the hybrid KPBL
kzi = 2
kzi2= 2
!FIND MAX TKE AND MIN THETAV IN THE LOWEST 250 M
k = kts+1
kthv = 1
ktke = 1
maxqke = 0.
minthv = 9.E9
DO WHILE (zw1D(k) .LE. sbl_lim)
qtke =MAX(Qke1D(k),0.) ! maximum QKE
IF (maxqke < qtke) then
maxqke = qtke
ktke = k
ENDIF
IF (minthv > thetav1D(k)) then
minthv = thetav1D(k)
kthv = k
ENDIF
k = k+1
ENDDO
!Use 5% of tke max (Kosovic and Curry, 2000; JAS)
!TKEeps = maxtke/20. = maxqke/40.
TKEeps = maxqke/40.
TKEeps = MAX(TKEeps,0.02) !0.010) !0.025)
!FIND THETAV-BASED PBLH (BEST FOR DAYTIME).
zi=0.
k = kthv+1
IF((landsea-1.5).GE.0)THEN
! WATER
delt_thv = 0.75
ELSE
! LAND
delt_thv = 1.25
ENDIF
zi=0.
k = kthv+1
DO WHILE (zi .EQ. 0.)
IF (thetav1D(k) .GE. (minthv + delt_thv))THEN
kzi = MAX(k-1,1)
zi = zw1D(k) - dz1D(k-1)* &
& MIN((thetav1D(k)-(minthv + delt_thv))/ &
& MAX(thetav1D(k)-thetav1D(k-1),1E-6),1.0)
ENDIF
k = k+1
IF (k .EQ. kte-1) zi = zw1D(kts+1) !EXIT SAFEGUARD
ENDDO
!print*,"IN GET_PBLH:",thsfc,zi
!FOR STABLE BOUNDARY LAYERS, USE TKE METHOD TO COMPLEMENT THE
!THETAV-BASED DEFINITION (WHEN THE THETA-V BASED PBLH IS BELOW ~0.5 KM).
!THE TANH WEIGHTING FUNCTION WILL MAKE THE TKE-BASED DEFINITION NEGLIGIBLE
!WHEN THE THETA-V-BASED DEFINITION IS ABOVE ~1 KM.
PBLH_TKE=0.
k = ktke+1
DO WHILE (PBLH_TKE .EQ. 0.)
!QKE CAN BE NEGATIVE (IF CKmod == 0)... MAKE TKE NON-NEGATIVE.
qtke =MAX(Qke1D(k)/2.,0.) ! maximum TKE
qtkem1=MAX(Qke1D(k-1)/2.,0.)
IF (qtke .LE. TKEeps) THEN
kzi2 = MAX(k-1,1)
PBLH_TKE = zw1D(k) - dz1D(k-1)* &
& MIN((TKEeps-qtke)/MAX(qtkem1-qtke, 1E-6), 1.0)
!IN CASE OF NEAR ZERO TKE, SET PBLH = LOWEST LEVEL.
PBLH_TKE = MAX(PBLH_TKE,zw1D(kts+1))
!print *,"PBLH_TKE:",i,j,PBLH_TKE, Qke1D(k)/2., zw1D(kts+1)
ENDIF
k = k+1
IF (k .EQ. kte-1) PBLH_TKE = zw1D(kts+1) !EXIT SAFEGUARD
ENDDO
!With TKE advection turned on, the TKE-based PBLH can be very large
!in grid points with convective precipitation (> 8 km!),
!so an artificial limit is imposed to not let PBLH_TKE exceed the
!theta_v-based PBL height +/- 500 m.
!This has no impact on 98-99% of the domain, but is the simplest patch
!that adequately addresses these extremely large PBLHs.
PBLH_TKE = MIN(PBLH_TKE,zi+500.)
PBLH_TKE = MAX(PBLH_TKE,MAX(zi-500.,10.))
wt=.5*TANH((zi - sbl_lim)/sbl_damp) + .5
IF (maxqke <= 0.05) THEN
!Cold pool situation - default to theta_v-based def
ELSE
!BLEND THE TWO PBLH TYPES HERE:
zi=PBLH_TKE*(1.-wt) + zi*wt
ENDIF
!ADD KPBL (kzi) for coupling to some Cu schemes
kzi = MAX(INT(kzi2*(1.-wt) + kzi*wt),1)
END SUBROUTINE GET_PBLH
! ==================================================================
! Much thanks to Kay Suslj of NASA-JPL for contributing the original version
! of this mass-flux scheme. Considerable changes have been made from it's
! original form. Some additions include:
! 1) scale-aware tapering as dx -> 0
! 2) transport of TKE (extra namelist option)
! 3) Chaboureau-Bechtold cloud fraction & coupling to radiation (when icloud_bl > 0)
! 4) some extra limits for numerical stability
! This scheme remains under development, so consider it experimental code.
!
SUBROUTINE StEM_mf( & 1,3
& kts,kte,dt,zw,dz,p, &
& momentum_opt, &
& tke_opt, &
& u,v,w,th,thl,thv,tk, &
& qt,qv,qc,qke, &
& exner,vt,vq,sgm, &
& ust,flt,flq,flqv,flqc, &
& pblh,kpbl,DX,landsea,ts, &
! outputs - tendencies
! &dth,dqv,dqc,du,dv,&
! outputs - updraft properties
& edmf_a,edmf_w, &
& edmf_qt,edmf_thl, &
& edmf_ent,edmf_qc, &
! outputs - variables needed for solver
& s_aw,s_awthl,s_awqt, &
& s_awqv,s_awqc, &
& s_awu,s_awv,s_awqke, &
#if (WRF_CHEM == 1)
& nchem,chem,s_awchem, &
#endif
! in/outputs - subgrid scale clouds
& qc_bl1d,cldfra_bl1d, &
! inputs - flags for moist arrays
&F_QC,F_QI, &
&Psig_shcu, &
! unputs for stochastic perturbations
&spp_pbl,rstoch_col)
! Stochastic
INTEGER, INTENT(IN) :: spp_pbl
REAL, DIMENSION(KTS:KTE) :: rstoch_col
! inputs:
INTEGER, INTENT(IN) :: KTS,KTE,momentum_opt,tke_opt,kpbl
REAL,DIMENSION(KTS:KTE), INTENT(IN) :: U,V,W,TH,THL,TK,QT,QV,QC,&
THV,P,qke,exner,dz
REAL,DIMENSION(KTS:KTE+1), INTENT(IN) :: ZW !height at full-sigma
REAL, INTENT(IN) :: DT,UST,FLT,FLQ,FLQV,FLQC,PBLH,&
DX,Psig_shcu,landsea,ts
LOGICAL, OPTIONAL :: F_QC,F_QI
! outputs - tendencies
! REAL,DIMENSION(KTS:KTE), INTENT(OUT) :: DTH,DQV,DQC,DU,DV
! outputs - updraft properties
REAL,DIMENSION(KTS:KTE), INTENT(OUT) :: edmf_a,edmf_w, &
& edmf_qt,edmf_thl, edmf_ent,edmf_qc
! output
INTEGER :: nup2,ktop
REAL :: maxmf
! outputs - variables needed for solver
REAL,DIMENSION(KTS:KTE+1) :: s_aw, & !sum ai*wis_awphi
s_awthl, & !sum ai*wi*phii
s_awqt, &
s_awqv, &
s_awqc, &
s_awu, &
s_awv, &
s_awqke
REAL,DIMENSION(KTS:KTE), INTENT(INOUT) :: qc_bl1d,cldfra_bl1d
INTEGER, PARAMETER :: NUP=10
! local variables
! updraft properties
REAL,DIMENSION(KTS:KTE+1,1:NUP) :: UPW,UPTHL,UPQT,UPQC,UPQV, &
UPA,UPU,UPV,UPTHV,UPQKE
! entrainment variables
REAL,DIMENSION(KTS:KTE,1:NUP) :: ENT,ENTf
INTEGER,DIMENSION(KTS:KTE,1:NUP) :: ENTi
! internal variables
INTEGER :: K,I,k50
REAL :: fltv,wstar,qstar,thstar,sigmaW,sigmaQT,sigmaTH,z0, &
pwmin,pwmax,wmin,wmax,wlv,wtv,Psig_w,maxw,maxqc,wpbl
REAL :: B,QTn,THLn,THVn,QCn,Un,Vn,QKEn,Wn2,EntEXP,EntW
! w parameters
REAL,PARAMETER :: &
&Wa=2./3., &
&Wb=0.002,&
&Wc=1.5
! Lateral entrainment parameters ( L0=100 and ENT0=0.1) were taken from
! Suselj et al (2013, jas). Note that Suselj et al (2014,waf) use L0=200 and ENT0=0.2.
REAL,PARAMETER :: &
& L0=100.,&
& ENT0=0.1
! Implement ideas from Neggers (2016, JAMES):
REAL, PARAMETER :: Atot = 0.1 !0125! Maximum total fractional area of all updrafts
REAL, PARAMETER :: lmax = 1000.! diameter of largest plume
REAL, PARAMETER :: dl = 100. ! diff size of each plume - the differential multiplied by the integrand
REAL, PARAMETER :: dcut = 1.0 ! max diameter of plume to parameterize relative to dx (km)
REAL :: d != -2.3 to -1.7 ;=-1.9 in Neggers paper; power law exponent for number density (N=Cl^d).
! Note that changing d to -2.0 makes each size plume equally contribute to the total coverage of all plumes.
! Note that changing d to -1.7 doubles the area coverage of the largest plumes relative to the smallest plumes.
REAL :: cn,c,l,n,an2,hux,maxwidth,wspd_pbl,cloud_base,width_flx
#if (WRF_CHEM == 1)
INTEGER, INTENT(IN) :: nchem
REAL,DIMENSION(kts:kte, nchem) :: chem
REAL,DIMENSION(kts:kte+1, nchem) :: s_awchem
REAL,DIMENSION(nchem) :: chemn
REAL,DIMENSION(KTS:KTE+1,1:NUP, nchem) :: UPCHEM
INTEGER :: ic
REAL,DIMENSION(KTS:KTE+1, nchem) :: edmf_chem
#endif
!JOE: add declaration of ERF
REAL :: ERF
!JOE: add option to switch cloud fraction calculations:
INTEGER, PARAMETER :: cldfra_opt = 0 ! 0: Chaboureau and Bechtold (2005, JGR)
! 1: Xu & Randall (1994)
!JOE:add for cldfra
REAL :: xcldfra, UMF_new, dcf, ktop_dcf, kbcon_dcf
! PARAMETERS FOR RANDALL AND XU (1996) CLOUD FRACTION
REAL, PARAMETER :: coef_p = 0.25, coef_gamm = 0.49, coef_alph = 100.
REAL :: satvp,rhgrid,h2oliq
LOGICAL :: superadiabatic
! VARIABLES FOR CHABOUREAU-BECHTOLD CLOUD FRACTION
REAL,DIMENSION(KTS:KTE), INTENT(INOUT) :: vt, vq, sgm
REAL :: sigq,xl,tlk,qsat_tl,rsl,cpm,a,qmq,mf_cf,diffqt,&
Fng,qww,alpha,beta,bb,f,pt,t,q2p,b9
! WA TEST 11/9/15 for consistent reduction of updraft params
REAL :: csigma,acfac
!JOE- plume overshoot
INTEGER :: overshoot
REAL :: bvf, Frz
! check the inputs
! print *,'dt',dt
! print *,'dz',dz
! print *,'u',u
! print *,'v',v
! print *,'thl',thl
! print *,'qt',qt
! print *,'ust',ust
! print *,'flt',flt
! print *,'flq',flq
! print *,'pblh',pblh
! Initialize individual updraft properties
UPW=0.
UPTHL=0.
UPTHV=0.
UPQT=0.
UPA=0.
UPU=0.
UPV=0.
UPQC=0.
UPQV=0.
UPQKE=0.
#if (WRF_CHEM == 1)
UPCHEM(KTS:KTE+1,1:NUP,1:nchem)=0.0
#endif
ENT=0.001
! Initialize mean updraft properties
edmf_a =0.
edmf_w =0.
edmf_qt =0.
edmf_thl=0.
edmf_ent=0.
edmf_qc =0.
#if (WRF_CHEM == 1)
edmf_chem(kts:kte+1,1:nchem) = 0.0
#endif
! Initialize the variables needed for implicit solver
s_aw=0.
s_awthl=0.
s_awqt=0.
s_awqv=0.
s_awqc=0.
s_awu=0.
s_awv=0.
s_awqke=0.
#if (WRF_CHEM == 1)
s_awchem(kts:kte+1,1:nchem) = 0.0
#endif
!taper off MF scheme when significant resolved-scale motions are present
!This function needs to be asymetric...
k = 1
maxw = 0.0
cloud_base = 9000.0
DO WHILE (ZW(k) < pblh + 500.)
wpbl = w(k)
IF(w(k) < 0.)wpbl = 2.*w(k)
maxw = MAX(maxw,ABS(wpbl))
!Find highest k-level below 50m AGL
IF(ZW(k)<=50.)k50=k
!Search for cloud base
IF(qc(k)>1E-5 .AND. cloud_base == 9000.0)THEN
cloud_base = 0.5*(ZW(k)+ZW(k+1))
ENDIF
k = k + 1
ENDDO
!print*," maxw before manipulation=", maxw
maxw = MAX(0.,maxw - 0.5) ! do nothing for small w, but
Psig_w = MAX(0.0, 1.0 - maxw/0.5) ! linearly taper off for w > 0.5 m/s
Psig_w = MIN(Psig_w, Psig_shcu)
!print*," maxw=", maxw," Psig_w=",Psig_w," Psig_shcu=",Psig_shcu
fltv = flt + svp1*flq
!PRINT*," fltv=",fltv," zi=",pblh
!Completely shut off MF scheme for strong resolved-scale vertical velocities.
IF(Psig_w == 0.0 .and. fltv > 0.0) fltv = -1.*fltv
! if surface buoyancy is positive we do integration, otherwise not, and make sure that
! PBLH > twice the height of the surface layer (set at z0 = 50m)
! Also, ensure that it is at least slightly superadiabatic up through 50 m
superadiabatic = .false.
IF((landsea-1.5).GE.0)THEN
hux = -0.002 ! WATER ! dT/dz must be < - 0.2 K per 100 m.
ELSE
hux = -0.005 ! LAND ! dT/dz must be < - 0.5 K per 100 m.
ENDIF
DO k=1,MAX(1,k50-1)
IF (k == 1) then
IF ((th(k)-ts)/(0.5*dz(k)) < hux) THEN
superadiabatic = .true.
ELSE
superadiabatic = .false.
exit
ENDIF
ELSE
IF ((th(k)-th(k-1))/(0.5*(dz(k)+dz(k-1))) < hux) THEN
superadiabatic = .true.
ELSE
superadiabatic = .false.
exit
ENDIF
ENDIF
ENDDO
! Determine the numer of updrafts/plumes in the grid column:
! Some of these criteria may be a little redundant but useful for bullet-proofing.
! (1) largest plume = 0.75 * dx.
! (2) Apply a scale-break, assuming no plumes with diameter larger than PBLH can exist.
! (3) max plume size beneath clouds deck approx = 0.5 * cloud_base.
! (4) add shear-dependent limit, when plume model breaks down.
! (5) land-only limit to reduce plume sizes in weakly forced conditions
! Criteria (1)
NUP2 = max(1,min(NUP,INT(dx*dcut/dl)))
! Criteria (2) and (4)
wspd_pbl=SQRT(MAX(u(kpbl)**2 + v(kpbl)**2, 0.01))
maxwidth = 0.9*PBLH - MIN(15.*MAX(wspd_pbl - 7.5, 0.), 0.3*PBLH)
! Criteria (3)
maxwidth = MIN(maxwidth,0.5*cloud_base)
! Criteria (5)
IF((landsea-1.5).LT.0)THEN
IF (cloud_base .LT. 2000.) THEN
width_flx = MAX(MIN(1000.*(0.6*tanh((flt - 0.120)/0.03) + .5),1000.), 0.)
ELSE
width_flx = MAX(MIN(1000.*(0.6*tanh((flt - 0.085)/0.04) + .5),1000.), 0.)
ENDIF
maxwidth = MIN(maxwidth,width_flx)
ENDIF
! Convert maxwidth to number of plumes
NUP2 = MIN(MAX(INT((maxwidth - MOD(maxwidth,100.))/100), 0), NUP2)
!Initialize values:
ktop = 0
maxmf= 0.0
IF ( fltv > 0.002 .AND. NUP2 .GE. 1 .AND. superadiabatic) then
!PRINT*," Conditions met to run mass-flux scheme",fltv,pblh
! Find coef C for number size density N
cn = 0.
d=-1.9 !set d to value suggested by Neggers 2015 (JAMES).
!d=-1.9 + .2*tanh((fltv - 0.05)/0.15)
do I=1,NUP2
l = dl*I ! diameter of plume
cn = cn + l**d * (l*l)/(dx*dx) * dl ! sum fractional area of each plume
enddo
C = Atot/cn !Normalize C according to the defined total fraction (Atot)
! Find the portion of the total fraction (Atot) of each plume size:
An2 = 0.
do I=1,NUP2
l = dl*I ! diameter of plume
N = C*l**d ! number density of plume n
UPA(1,I) = N*l*l/(dx*dx) * dl ! fractional area of plume n
! Make updraft area (UPA) a function of the buoyancy flux
! acfac = .5*tanh((fltv - 0.05)/0.2) + .5
acfac = .5*tanh((fltv - 0.07)/0.09) + .5
UPA(1,I)=UPA(1,I)*acfac
An2 = An2 + UPA(1,I) ! total fractional area of all plumes
!print*," plume size=",l,"; area=",An,"; total=",An2
end do
! get entrainment coefficient
! get dz/L0
!ENTf(kts:kte,1:Nup)=0.1
!ENTi(kts:kte,1:Nup)=0.1
!ENT(kts:kte,1:Nup)=0.001
!do i=1,Nup2
! do k=kts+1,kte
! ENTf(k,i)=(ZW(k)-ZW(k-1))/L0 ! input into Poisson
! ENTf(k,i)=MIN(ENTf(k,i),9.9) !JOE: test avoiding FPE
! ENTf(k,i)=MAX(ENTf(k,i),0.05) !JOE: test avoiding FPE
! enddo
!enddo
! get Poisson P(dz/L0)
!call Poisson(1,Nup2,kts+1,kte,ENTf,ENTi)
! entrainent: Ent=Ent0/dz*P(dz/L0)
! set initial conditions for updrafts
z0=50.
pwmin=0.1 ! was 0.5
pwmax=0.5 ! was 3.0
wstar=max(1.E-2,(g/thv(1)*fltv*pblh)**(1./3.))
qstar=max(flq,1.0E-5)/wstar
thstar=flt/wstar
IF((landsea-1.5).GE.0)THEN
csigma = 1.34 ! WATER
ELSE
csigma = 1.34 ! LAND
ENDIF
sigmaW =1.34*wstar*(z0/pblh)**(1./3.)*(1 - 0.8*z0/pblh)
sigmaQT=csigma*qstar*(z0/pblh)**(-1./3.)
sigmaTH=csigma*thstar*(z0/pblh)**(-1./3.)
wmin=sigmaW*pwmin
wmax=sigmaW*pwmax
!recompute acfac for plume excess
acfac = .5*tanh((fltv - 0.08)/0.07) + .5
!SPECIFY SURFACE UPDRAFT PROPERTIES
DO I=1,NUP2
wlv=wmin+(wmax-wmin)/NUP2*(i-1)
wtv=wmin+(wmax-wmin)/NUP2*i
!SURFACE UPDRAFT VERTICAL VELOCITY
!UPW(1,I)=0.5*(wlv+wtv)
UPW(1,I)=wmin + REAL(i)/REAL(NUP)*(wmax-wmin)
!IF (UPW(1,I) > 0.5*ZW(2)/dt) UPW(1,I) = 0.5*ZW(2)/dt
!SURFACE UPDRAFT AREA
!UPA(1,I)=0.5*ERF(wtv/(sqrt(2.)*sigmaW)) - 0.5*ERF(wlv/(sqrt(2.)*sigmaW))
!UPA(1,I)=0.25*ERF(wtv/(sqrt(2.)*sigmaW)) - 0.25*ERF(wlv/(sqrt(2.)*sigmaW)) !12.0
UPU(1,I)=U(1)
UPV(1,I)=V(1)
UPQC(1,I)=0
!UPQT(1,I) =QT(1) +0.58*UPW(1,I)*sigmaQT/sigmaW
!UPTHV(1,I)=THV(1)+0.58*UPW(1,I)*sigmaTH/sigmaW
!Alternatively, initialize parcel over lowest 50m
UPQT(1,I) = 0.
UPTHV(1,I)= 0.
UPTHL(1,I)= 0.
k50=1 !for now, keep at lowest model layer...
DO k=1,k50
UPQT(1,I) = UPQT(1,I) +QT(k) +0.58*UPW(1,I)*sigmaQT/sigmaW *acfac
UPTHV(1,I)= UPTHV(1,I)+THV(k)+0.58*UPW(1,I)*sigmaTH/sigmaW *acfac
UPTHL(1,I)= UPTHL(1,I)+THL(k)+0.58*UPW(1,I)*sigmaTH/sigmaW *acfac
ENDDO
UPQT(1,I) = UPQT(1,I)/REAL(k50)
UPTHV(1,I)= UPTHV(1,I)/REAL(k50)
!was UPTHL(1,I)= UPTHV(1,I)/(1.+svp1*UPQT(1,I)) !assume no saturated parcel at surface
UPTHL(1,I)= UPTHL(1,I)/REAL(k50) ! now, if the lowest layer is saturated, it will be counted for.
UPQKE(1,I)= QKE(1)
#if (WRF_CHEM == 1)
do ic = 1,nchem
UPCHEM(1,I,ic)= CHEM(1,ic)
enddo
#endif
! !DEBUG
! IF (UPA(1,I)<0. .OR. UPA(1,I)>0.5 .OR. wstar<0. .OR. wstar>4.0 .OR. &
! ABS(thstar)> 5. .OR. sigmaW>1.5) THEN
! PRINT*,"IN Mass-Flux: UPA(1,i)=",UPA(1,i)
! PRINT*," wstar=",wstar," qstar=",qstar
! PRINT*," thstar=",thstar," sigmaW=",sigmaW
! ENDIF
ENDDO
!QCn = 0.
! do integration updraft
DO I=1,NUP2
QCn = 0.
overshoot = 0
l = dl*I ! diameter of plume
DO k=KTS+1,KTE
!w-dependency for entrainment a la Tian and Kuang (2016)
ENT(k,i) = 0.75/(MIN(MAX(UPW(K-1,I),0.75),1.25)*l)
!Entrainment from Negggers (2015, JAMES)
!ENT(k,i) = 0.02*l**-0.35 - 0.0009
!JOE - implement minimum background entrainment
ENT(k,i) = max(ENT(k,i),0.0006)
ENT(k,i) = max(ENT(k,i),0.05/ZW(k))
!JOE - increase entrainment for plumes extending very high.
IF(ZW(k) >= pblh+1000.) ENT(k,i) =ENT(k,i) + (ZW(k)-(pblh+1000.)) * 5.0E-6
IF(UPW(K-1,I) > 1.5) ENT(k,i) = ENT(k,i) + 0.004*(UPW(K-1,I) - 1.5)
ENT(k,i) = min(ENT(k,i),0.9/(ZW(k)-ZW(k-1)))
! Linear entrainment:
EntExp= ENT(K,I)*(ZW(k)-ZW(k-1))
QTn =UPQT(k-1,I) *(1.-EntExp) + QT(k-1)*EntExp
THLn=UPTHL(k-1,I)*(1.-EntExp) + THL(k-1)*EntExp
Un =UPU(k-1,I) *(1.-EntExp) + U(k-1)*EntExp
Vn =UPV(k-1,I) *(1.-EntExp) + V(k-1)*EntExp
QKEn=UPQKE(k-1,I)*(1.-EntExp) + QKE(k-1)*EntExp
! Exponential Entrainment:
!EntExp= exp(-ENT(K,I)*(ZW(k)-ZW(k-1)))
!QTn =QT(K) *(1-EntExp)+UPQT(K-1,I)*EntExp
!THLn=THL(K)*(1-EntExp)+UPTHL(K-1,I)*EntExp
!Un =U(K) *(1-EntExp)+UPU(K-1,I)*EntExp
!Vn =V(K) *(1-EntExp)+UPV(K-1,I)*EntExp
!QKEn=QKE(k)*(1-EntExp)+UPQKE(K-1,I)*EntExp
#if (WRF_CHEM == 1)
do ic = 1,nchem
! Exponential Entrainment:
!chemn(ic) = chem(k,ic)*(1-EntExp)+UPCHEM(K-1,I,ic)*EntExp
! Linear entrainment:
chemn(ic)=UPCHEM(k-1,I,ic)*(1.-EntExp) + chem(k-1,ic)*EntExp
enddo
#endif
! get thvn,qcn
call condensation_edmf
(QTn,THLn,(P(K)+P(K-1))/2.,ZW(k),THVn,QCn)
B=g*(0.5*(THVn+UPTHV(k-1,I))/THV(k-1) - 1.0)
EntW=exp(-2.*(Wb+Wc*ENT(K,I))*(ZW(k)-ZW(k-1)))
Wn2=UPW(K-1,I)**2*EntW + (1.-EntW)*0.5*Wa*B/(Wb+Wc*ENT(K,I))
Wn2=MAX(Wn2,0.0)
!Allow strongly forced plumes to overshoot if KE is sufficient
IF (fltv > 0.05 .AND. Wn2 <= 0 .AND. overshoot == 0) THEN
overshoot = 1
IF ( THV(k)-THV(k-1) .GT. 0.0 ) THEN
bvf = SQRT( gtr*(THV(k)-THV(k-1))/(0.5*(dz(k)+dz(k-1))) )
!vertical Froude number
Frz = UPW(K-1,I)/(bvf*0.5*(dz(k)+dz(k-1)))
IF ( Frz >= 0.5 ) Wn2 = MIN(Frz,1.0)*(UPW(K-1,I)**2)
ENDIF
ELSEIF (fltv > 0.05 .AND. overshoot == 1) THEN
!Do not let overshooting parcel go more than 1 layer up
Wn2 = 0.0
ENDIF
!Limit very tall plumes
Wn2=Wn2*EXP(-MAX(ZW(k)-(pblh+1500.),0.0)/1000.)
IF(ZW(k) >= pblh+3000.)Wn2=0.
!JOE- minimize the plume penetratration in stratocu-topped PBL
IF (fltv < 0.06) THEN
IF(ZW(k) >= pblh-200. .AND. qc(k) > 1e-5 .AND. I > 2) Wn2=0.
ENDIF
IF (Wn2 > 0.) THEN
UPW(K,I)=sqrt(Wn2)
UPTHV(K,I)=THVn
UPTHL(K,I)=THLn
UPQT(K,I)=QTn
UPQC(K,I)=QCn
UPU(K,I)=Un
UPV(K,I)=Vn
UPQKE(K,I)=QKEn
UPA(K,I)=UPA(K-1,I)
#if (WRF_CHEM == 1)
do ic = 1,nchem
UPCHEM(k,I,ic) = chemn(ic)
enddo
#endif
ktop = MAX(ktop,k)
ELSE
exit
END IF
ENDDO
ENDDO
ELSE
!At least one of the conditions was not met for activating the MF scheme.
NUP2=0.
END IF !end criteria for mass-flux scheme
ktop=MIN(ktop,KTE-1) ! Just to be safe...
!
! get updraft properties, for saving
!
IF(nup2 > 0) THEN
DO k=KTS,ktop !KTE-1
DO I=1,NUP2
edmf_a(K)=edmf_a(K)+UPA(K+1,I)
edmf_w(K)=edmf_w(K)+UPA(K+1,I)*UPW(K+1,I)
edmf_qt(K)=edmf_qt(K)+UPA(K+1,I)*UPQT(K+1,I)
edmf_thl(K)=edmf_thl(K)+UPA(K+1,I)*UPTHL(K+1,I)
edmf_ent(K)=edmf_ent(K)+UPA(K+1,I)*ENT(K+1,I)
edmf_qc(K)=edmf_qc(K)+UPA(K+1,I)*UPQC(K+1,I)
#if (WRF_CHEM == 1)
do ic = 1,nchem
edmf_chem(k,ic) = edmf_chem(k,ic) + UPA(K+1,I)*UPCHEM(k,I,ic)
enddo
#endif
ENDDO
IF (edmf_a(k)>0.) THEN
edmf_w(k)=edmf_w(k)/edmf_a(k)
edmf_qt(k)=edmf_qt(k)/edmf_a(k)
edmf_thl(k)=edmf_thl(k)/edmf_a(k)
edmf_ent(k)=edmf_ent(k)/edmf_a(k)
edmf_qc(k)=edmf_qc(k)/edmf_a(k)
#if (WRF_CHEM == 1)
do ic = 1,nchem
edmf_chem(k,ic) = edmf_chem(k,ic)/edmf_a(k)
enddo
#endif
edmf_a(k)=edmf_a(k)*Psig_w
!FIND MAXIMUM MASS-FLUX IN THE COLUMN:
IF(edmf_a(k)*edmf_w(k) > maxmf) maxmf = edmf_a(k)*edmf_w(k)
ENDIF
ENDDO
DO k=KTS,ktop !KTE
DO I=1,NUP2
s_aw(k) = s_aw(K) + UPA(K,I)*UPW(K,I)*Psig_w * (1.0+rstoch_col(k))
s_awthl(k)= s_awthl(K) + UPA(K,i)*UPW(K,I)*UPTHL(K,I)*Psig_w * (1.0+rstoch_col(k))
s_awqt(k) = s_awqt(K) + UPA(K,i)*UPW(K,I)*UPQT(K,I)*Psig_w * (1.0+rstoch_col(k))
s_awqc(k) = s_awqc(K) + UPA(K,i)*UPW(K,I)*UPQC(K,I)*Psig_w * (1.0+rstoch_col(k))
IF (momentum_opt > 0) THEN
s_awu(k) = s_awu(K) + UPA(K,i)*UPW(K,I)*UPU(K,I)*Psig_w * (1.0+rstoch_col(k))
s_awv(k) = s_awv(K) + UPA(K,i)*UPW(K,I)*UPV(K,I)*Psig_w * (1.0+rstoch_col(k))
ENDIF
IF (tke_opt > 0) THEN
s_awqke(k)= s_awqke(K) + UPA(K,i)*UPW(K,I)*UPQKE(K,I)*Psig_w * (1.0+rstoch_col(k))
ENDIF
#if (WRF_CHEM == 1)
do ic = 1,nchem
s_awchem(k,ic) = s_awchem(k,ic) + UPA(K,i)*UPW(K,I)*UPCHEM(K,I,ic)*Psig_w * (1.0+rstoch_col(k))
enddo
#endif
ENDDO
s_awqv(k) = s_awqt(k) - s_awqc(k)
ENDDO
!JOE: ADD CLDFRA_bl1d, qc_bl1d. Note that they have already been defined in
! mym_condensation. Here, a shallow-cu component is added.
DO K=KTS,ktop !KTE
IF (cldfra_opt == 0) THEN
IF(edmf_qc(k)>0.0)THEN
satvp = 3.80*exp(17.27*(th(k)-273.)/ &
(th(k)-36.))/(.01*p(k))
rhgrid = max(.01,MIN( 1., qv(k) /satvp))
!COMPUTE CLDFRA & QC_BL FROM MASS-FLUX SCHEME and recompute vt & vq
xl = xl_blend
(tk(k)) ! obtain blended heat capacity
tlk = thl(k)*(p(k)/p1000mb)**rcp ! recover liquid temp (tl) from thl
qsat_tl = qsat_blend
(tlk,p(k)) ! get saturation water vapor mixing ratio
! at tl and p
rsl = xl*qsat_tl / (r_v*tlk**2) ! slope of C-C curve at t = tl
! CB02, Eqn. 4
cpm = cp + qt(k)*cpv ! CB02, sec. 2, para. 1
a = 1./(1. + xl*rsl/cpm) ! CB02 variable "a"
b9 = a*rsl ! CB02 variable "b"
q2p = xlvcp/exner(k)
pt = thl(k) +q2p*edmf_qc(k) ! potential temp
bb = b9*tk(k)/pt ! bb is "b9" in BCMT95. Their "b9" differs from
! "b9" in CB02 by a factor
! of T/theta. Strictly, b9 above is formulated in
! terms of sat. mixing ratio, but bb in BCMT95 is
! cast in terms of sat. specific humidity. The
! conversion is neglected here.
qww = 1.+0.61*qt(k)
alpha = 0.61*pt
t = th(k)*exner(k)
beta = pt*xl/(t*cp) - 1.61*pt
!Buoyancy flux terms have been moved to the end of this section...
!Now calculate convective component of the cloud fraction:
if (a > 0.0) then
f = MIN(1.0/a, 4.0) ! f is vertical profile scaling function (CB2005)
else
f = 1.0
endif
sigq = 6.E-3 * edmf_a(k) * edmf_w(k) * f ! convective component of sigma (CB2005)
!sigq = MAX(sigq, 1.0E-4)
sigq = SQRT(sigq**2 + sgm(k)**2) ! combined conv + stratus components
qmq = a * (qt(k) - qsat_tl) ! saturation deficit/excess;
! the numerator of Q1
mf_cf = min(max(0.5 + 0.36 * atan(1.55*(qmq/sigq)),0.01),1.0)
!IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
! print*,"In MYNN, StEM edmf"
! print*," CB: qt=",qt(k)," qsat=",qsat_tl," satdef=",qt(k) - qsat_tl
! print*," CB: sigq=",sigq," qmq=",qmq," tlk=",tlk
! print*," CB: mf_cf=",mf_cf," cldfra_bl=",cldfra_bl1d(k)," edmf_a=",edmf_a(k)
!ENDIF
IF (rhgrid >= .93) THEN
!IN high RH, defer to stratus component if > convective component
cldfra_bl1d(k) = MAX(mf_cf, cldfra_bl1d(k))
IF (cldfra_bl1d(k) > edmf_a(k)) THEN
qc_bl1d(k) = edmf_qc(k)*edmf_a(k)/cldfra_bl1d(k)
ELSE
cldfra_bl1d(k)=edmf_a(k)
qc_bl1d(k) = edmf_qc(k)
ENDIF
ELSE
IF (mf_cf > edmf_a(k)) THEN
cldfra_bl1d(k) = mf_cf
qc_bl1d(k) = edmf_qc(k)*edmf_a(k)/mf_cf
ELSE
cldfra_bl1d(k)=edmf_a(k)
qc_bl1d(k) = edmf_qc(k)
ENDIF
ENDIF
!Now recalculate the terms for the buoyancy flux for mass-flux clouds:
!See mym_condensation for details on these formulations. The
!cloud-fraction bounding was added to improve cloud retention,
!following RAP and HRRR testing.
Fng = 2.05 ! the non-Gaussian transport factor (assumed constant)
vt(k) = qww - MIN(0.3,cldfra_bl1D(k))*beta*bb*Fng - 1.
vq(k) = alpha + MIN(0.3,cldfra_bl1D(k))*beta*a*Fng - tv0
ENDIF
ELSEIF(cldfra_opt == 1) THEN
!Randall and Xu
qc_bl1d(k) = MAX(qc_bl1d(k), edmf_qc(k))
if(F_qc .and. .not. F_qi)then
satvp = 3.80*exp(17.27*(th(k)-273.)/ &
(th(k)-36.))/(.01*p(k))
rhgrid = max(.1,MIN( .95, qv(k) /satvp))
h2oliq=1000.*qc_bl1d(k)
satvp=1000.*satvp
cldfra_bl1d(k)=(1.-exp(-coef_alph*h2oliq/&
((1.-rhgrid)*satvp)**coef_gamm))*(rhgrid**coef_p)
cldfra_bl1d(k)=max(0.0,MIN(1.,cldfra_bl1d(k)))
elseif(F_qc .and. F_qi)then
satvp = 3.80*exp(17.27*(th(k)-273.)/ &
(th(k)-36.))/(.01*p(k))
rhgrid = max(.1,MIN( .95, qv(k) /satvp))
h2oliq=1000.*qc_bl1d(k)
satvp=1000.*satvp
cldfra_bl1d(k)=(1.-exp(-coef_alph*h2oliq/&
((1.-rhgrid)*satvp)**coef_gamm))*(rhgrid**coef_p)
cldfra_bl1d(k)=max(0.0,MIN(1.,cldfra_bl1d(k)))
endif
ENDIF
ENDDO
ENDIF !end nup2 > 0
!modify output (negative: dry plume, positive: moist plume)
IF (ktop > 0) THEN
maxqc = maxval(edmf_qc(1:ktop))
IF ( maxqc < 1.E-8) maxmf = -1.0*maxmf
ENDIF
!
! debugging
!
IF (edmf_w(1) > 4.0) THEN
! surface values
print *,'flq:',flq,' fltv:',fltv
print *,'pblh:',pblh,' wstar:',wstar
print *,'sigmaW=',sigmaW,' sigmaTH=',sigmaTH,' sigmaQT=',sigmaQT
! means
! print *,'u:',u
! print *,'v:',v
! print *,'thl:',thl
! print *,'thv:',thv
! print *,'qt:',qt
! print *,'p:',p
! updrafts
! DO I=1,NUP
! print *,'up:A',i
! print *,UPA(:,i)
! print *,'up:W',i
! print*,UPW(:,i)
! print *,'up:thv',i
! print *,UPTHV(:,i)
! print *,'up:thl',i
! print *,UPTHL(:,i)
! print *,'up:qt',i
! print *,UPQT(:,i)
! print *,'up:tQC',i
! print *,UPQC(:,i)
! print *,'up:ent',i
! print *,ENT(:,i)
! ENDDO
! mean updrafts
print *,' edmf_a',edmf_a(1:14)
print *,' edmf_w',edmf_w(1:14)
print *,' edmf_qt:',edmf_qt(1:14)
print *,' edmf_thl:',edmf_thl(1:14)
ENDIF !END Debugging
! initialization of deltas
! DO k=kts,kte
! dth(k)=0.
! dqv(k)=0.
! dqc(k)=0.
! du(k)=0.
! dv(k)=0.
! ENDDO
END SUBROUTINE StEM_MF
!=================================================================
subroutine Poisson(istart,iend,jstart,jend,mu,POI),1
integer, intent(in) :: istart,iend,jstart,jend
real,dimension(istart:iend,jstart:jend),intent(in) :: MU
integer, dimension(istart:iend,jstart:jend), intent(out) :: POI
integer :: i,j
!
! do this only once
! call init_random_seed
do i=istart,iend
do j=jstart,jend
call random_Poisson
(mu(i,j),.true.,POI(i,j))
enddo
enddo
end subroutine Poisson
!=================================================================
subroutine init_random_seed() 1,1
!JOE: PGI had problem! use iso_fortran_env, only: int64
!JOE: PGI had problem! use ifport, only: getpid
implicit none
integer, allocatable :: seed(:)
integer :: i, n, un, istat, dt(8), pid
!JOE: PGI had problem! integer(int64) :: t
integer :: t
call random_seed(size = n)
allocate(seed(n))
! First try if the OS provides a random number generator
!JOE: PGI had problem! open(newunit=un, file="/dev/urandom", access="stream", &
un=191
open(unit=un, file="/dev/urandom", access="stream", &
form="unformatted", action="read", status="old", iostat=istat)
if (istat == 0) then
read(un) seed
close(un)
else
! Fallback to XOR:ing the current time and pid. The PID is
! useful in case one launches multiple instances of the same
! program in parallel.
call system_clock(t)
if (t == 0) then
call date_and_time(values=dt)
!t = (dt(1) - 1970) * 365_int64 * 24 * 60 * 60 * 1000 &
! + dt(2) * 31_int64 * 24 * 60 * 60 * 1000 &
! + dt(3) * 24_int64 * 60 * 60 * 1000 &
! + dt(5) * 60 * 60 * 1000 &
! + dt(6) * 60 * 1000 + dt(7) * 1000 &
! + dt(8)
t = dt(6) * 60 & ! only return seconds for smaller t
+ dt(7)
end if
!JOE: PGI had problem!pid = getpid()
! for distributed memory jobs we need to fix this
!pid=1
pid = 666 + MOD(t,10) !JOE: doesn't work for PG compilers: getpid()
t = ieor(t, int(pid, kind(t)))
do i = 1, n
seed(i) = lcg
(t)
end do
end if
call random_seed(put=seed)
contains
! Pseudo-random number generator (PRNG)
! This simple PRNG might not be good enough for real work, but is
! sufficient for seeding a better PRNG.
function lcg(s) 1
integer :: lcg
!JOE: PGI had problem! integer(int64) :: s
integer :: s
if (s == 0) then
!s = 104729
s = 1047
else
!s = mod(s, 4294967296_int64)
s = mod(s, 71)
end if
!s = mod(s * 279470273_int64, 4294967291_int64)
s = mod(s * 23, 17)
!lcg = int(mod(s, int(huge(0), int64)), kind(0))
lcg = int(mod(s, int(s/3.5)))
end function lcg
end subroutine init_random_seed
subroutine random_Poisson(mu,first,ival) 1,1
!**********************************************************************
! Translated to Fortran 90 by Alan Miller from: RANLIB
!
! Library of Fortran Routines for Random Number Generation
!
! Compiled and Written by:
!
! Barry W. Brown
! James Lovato
!
! Department of Biomathematics, Box 237
! The University of Texas, M.D. Anderson Cancer Center
! 1515 Holcombe Boulevard
! Houston, TX 77030
!
! Generates a single random deviate from a Poisson distribution with mean mu.
! Scalar Arguments:
REAL, INTENT(IN) :: mu !The mean of the Poisson distribution from which
!a random deviate is to be generated.
LOGICAL, INTENT(IN) :: first
INTEGER :: ival
! TABLES: COEFFICIENTS A0-A7 FOR STEP F. FACTORIALS FACT
! COEFFICIENTS A(K) - FOR PX = FK*V*V*SUM(A(K)*V**K)-DEL
! SEPARATION OF CASES A AND B
!
! .. Local Scalars ..
!JOE: since many of these scalars conflict with globally declared closure constants (above),
! need to change XX to XX_s
! REAL :: b1, b2, c, c0, c1, c2, c3, del, difmuk, e, fk, fx, fy, g, &
! omega, px, py, t, u, v, x, xx
REAL :: b1_s, b2_s, c, c0, c1_s, c2_s, c3_s, del, difmuk, e, fk, fx, fy, g_s, &
omega, px, py, t, u, v, x, xx
REAL, SAVE :: s, d, p, q, p0
INTEGER :: j, k, kflag
LOGICAL, SAVE :: full_init
INTEGER, SAVE :: l, m
! ..
! .. Local Arrays ..
REAL, SAVE :: pp(35)
! ..
! .. Data statements ..
!JOE: since many of these scalars conflict with globally declared closure constants (above),
! need to change XX to XX_s
! REAL, PARAMETER :: a0 = -.5, a1 = .3333333, a2 = -.2500068, a3 = .2000118, &
REAL, PARAMETER :: a0 = -.5, a1_s = .3333333, a2_s = -.2500068, a3 = .2000118, &
a4 = -.1661269, a5 = .1421878, a6 = -0.1384794, &
a7 = .1250060
REAL, PARAMETER :: fact(10) = (/ 1., 1., 2., 6., 24., 120., 720., 5040., &
40320., 362880. /)
!JOE: difmuk,fk,u errors - undefined
difmuk = 0.
fk = 1.0
u = 0.
! ..
! .. Executable Statements ..
IF (mu > 10.0) THEN
! C A S E A. (RECALCULATION OF S, D, L IF MU HAS CHANGED)
IF (first) THEN
s = SQRT(mu)
d = 6.0*mu*mu
! THE POISSON PROBABILITIES PK EXCEED THE DISCRETE NORMAL
! PROBABILITIES FK WHENEVER K >= M(MU). L=IFIX(MU-1.1484)
! IS AN UPPER BOUND TO M(MU) FOR ALL MU >= 10 .
l = mu - 1.1484
full_init = .false.
END IF
! STEP N. NORMAL SAMPLE - random_normal() FOR STANDARD NORMAL DEVIATE
g_s = mu + s*random_normal()
IF (g_s > 0.0) THEN
ival = g_s
! STEP I. IMMEDIATE ACCEPTANCE IF ival IS LARGE ENOUGH
IF (ival>=l) RETURN
! STEP S. SQUEEZE ACCEPTANCE - SAMPLE U
fk = ival
difmuk = mu - fk
CALL RANDOM_NUMBER(u)
IF (d*u >= difmuk*difmuk*difmuk) RETURN
END IF
! STEP P. PREPARATIONS FOR STEPS Q AND H.
! (RECALCULATIONS OF PARAMETERS IF NECESSARY)
! .3989423=(2*PI)**(-.5) .416667E-1=1./24. .1428571=1./7.
! THE QUANTITIES B1_S, B2_S, C3_S, C2_S, C1_S, C0 ARE FOR THE HERMITE
! APPROXIMATIONS TO THE DISCRETE NORMAL PROBABILITIES FK.
! C=.1069/MU GUARANTEES MAJORIZATION BY THE 'HAT'-FUNCTION.
IF (.NOT. full_init) THEN
omega = .3989423/s
b1_s = .4166667E-1/mu
b2_s = .3*b1_s*b1_s
c3_s = .1428571*b1_s*b2_s
c2_s = b2_s - 15.*c3_s
c1_s = b1_s - 6.*b2_s + 45.*c3_s
c0 = 1. - b1_s + 3.*b2_s - 15.*c3_s
c = .1069/mu
full_init = .true.
END IF
IF (g_s < 0.0) GO TO 50
! 'SUBROUTINE' F IS CALLED (KFLAG=0 FOR CORRECT RETURN)
kflag = 0
GO TO 70
! STEP Q. QUOTIENT ACCEPTANCE (RARE CASE)
40 IF (fy-u*fy <= py*EXP(px-fx)) RETURN
! STEP E. EXPONENTIAL SAMPLE - random_exponential() FOR STANDARD EXPONENTIAL
! DEVIATE E AND SAMPLE T FROM THE LAPLACE 'HAT'
! (IF T <= -.6744 THEN PK < FK FOR ALL MU >= 10.)
50 e = random_exponential
()
CALL RANDOM_NUMBER(u)
u = u + u - one
t = 1.8 + SIGN(e, u)
IF (t <= (-.6744)) GO TO 50
ival = mu + s*t
fk = ival
difmuk = mu - fk
! 'SUBROUTINE' F IS CALLED (KFLAG=1 FOR CORRECT RETURN)
kflag = 1
GO TO 70
! STEP H. HAT ACCEPTANCE (E IS REPEATED ON REJECTION)
60 IF (c*ABS(u) > py*EXP(px+e) - fy*EXP(fx+e)) GO TO 50
RETURN
! STEP F. 'SUBROUTINE' F. CALCULATION OF PX, PY, FX, FY.
! CASE ival < 10 USES FACTORIALS FROM TABLE FACT
70 IF (ival>=10) GO TO 80
px = -mu
!JOE: had error " Subscript #1 of FACT has value -858993459"; shouldn't be < 1.
!py = mu**ival/fact(ival+1)
py = mu**ival/fact(MAX(ival+1,1))
GO TO 110
! CASE ival >= 10 USES POLYNOMIAL APPROXIMATION
! A0-A7 FOR ACCURACY WHEN ADVISABLE
! .8333333E-1=1./12. .3989423=(2*PI)**(-.5)
80 del = .8333333E-1/fk
del = del - 4.8*del*del*del
v = difmuk/fk
IF (ABS(v)>0.25) THEN
px = fk*LOG(one + v) - difmuk - del
ELSE
px = fk*v*v* (((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2_s)*v+a1_s)*v+a0) - del
END IF
py = .3989423/SQRT(fk)
110 x = (half - difmuk)/s
xx = x*x
fx = -half*xx
fy = omega* (((c3_s*xx + c2_s)*xx + c1_s)*xx + c0)
IF (kflag <= 0) GO TO 40
GO TO 60
!---------------------------------------------------------------------------
! C A S E B. mu < 10
! START NEW TABLE AND CALCULATE P0 IF NECESSARY
ELSE
IF (first) THEN
m = MAX(1, INT(mu))
l = 0
!print*,"mu=",mu
!print*," mu=",mu," p=",EXP(-mu)
p = EXP(-mu)
q = p
p0 = p
END IF
! STEP U. UNIFORM SAMPLE FOR INVERSION METHOD
DO
CALL RANDOM_NUMBER(u)
ival = 0
IF (u <= p0) RETURN
! STEP T. TABLE COMPARISON UNTIL THE END PP(L) OF THE
! PP-TABLE OF CUMULATIVE POISSON PROBABILITIES
! (0.458=PP(9) FOR MU=10)
IF (l == 0) GO TO 150
j = 1
IF (u > 0.458) j = MIN(l, m)
DO k = j, l
IF (u <= pp(k)) GO TO 180
END DO
IF (l == 35) CYCLE
! STEP C. CREATION OF NEW POISSON PROBABILITIES P
! AND THEIR CUMULATIVES Q=PP(K)
150 l = l + 1
DO k = l, 35
p = p*mu / k
q = q + p
pp(k) = q
IF (u <= q) GO TO 170
END DO
l = 35
END DO
170 l = k
180 ival = k
RETURN
END IF
RETURN
END subroutine random_Poisson
!==================================================================
FUNCTION random_normal() RESULT(fn_val)
! Adapted from the following Fortran 77 code
! ALGORITHM 712, COLLECTED ALGORITHMS FROM ACM.
! THIS WORK PUBLISHED IN TRANSACTIONS ON MATHEMATICAL SOFTWARE,
! VOL. 18, NO. 4, DECEMBER, 1992, PP. 434-435.
! The function random_normal() returns a normally distributed pseudo-random
! number with zero mean and unit variance.
! The algorithm uses the ratio of uniforms method of A.J. Kinderman
! and J.F. Monahan augmented with quadratic bounding curves.
REAL :: fn_val
! Local variables
REAL :: s = 0.449871, t = -0.386595, a = 0.19600, b = 0.25472, &
r1 = 0.27597, r2 = 0.27846, u, v, x, y, q
! Generate P = (u,v) uniform in rectangle enclosing acceptance region
DO
CALL RANDOM_NUMBER(u)
CALL RANDOM_NUMBER(v)
v = 1.7156 * (v - half)
! Evaluate the quadratic form
x = u - s
y = ABS(v) - t
q = x**2 + y*(a*y - b*x)
! Accept P if inside inner ellipse
IF (q < r1) EXIT
! Reject P if outside outer ellipse
IF (q > r2) CYCLE
! Reject P if outside acceptance region
IF (v**2 < -4.0*LOG(u)*u**2) EXIT
END DO
! Return ratio of P's coordinates as the normal deviate
fn_val = v/u
RETURN
END FUNCTION random_normal
!===============================================================
FUNCTION random_exponential() RESULT(fn_val) 1
! Adapted from Fortran 77 code from the book:
! Dagpunar, J. 'Principles of random variate generation'
! Clarendon Press, Oxford, 1988. ISBN 0-19-852202-9
! FUNCTION GENERATES A RANDOM VARIATE IN [0,INFINITY) FROM
! A NEGATIVE EXPONENTIAL DlSTRIBUTION WlTH DENSITY PROPORTIONAL
! TO EXP(-random_exponential), USING INVERSION.
REAL :: fn_val
! Local variable
REAL :: r
DO
CALL RANDOM_NUMBER(r)
IF (r > zero) EXIT
END DO
fn_val = -LOG(r)
RETURN
END FUNCTION random_exponential
!===============================================================
subroutine condensation_edmf(QT,THL,P,zagl,THV,QC) 1,2
!
! zero or one condensation for edmf: calculates THV and QC
!
real,intent(in) :: QT,THL,P,zagl
real,intent(out) :: THV
real,intent(inout):: QC
integer :: niter,i
real :: diff,exn,t,th,qs,qcold
! constants used from module_model_constants.F
! p1000mb
! rcp ... Rd/cp
! xlv ... latent heat for water (2.5e6)
! cp
! rvord .. rv/rd (1.6)
! number of iterations
niter=50
! minimum difference
diff=2.e-5
EXN=(P/p1000mb)**rcp
!QC=0. !better first guess QC is incoming from lower level, do not set to zero
do i=1,NITER
T=EXN*THL + xlv/cp*QC
QS=qsat_blend
(T,P)
QCOLD=QC
QC=0.5*QC + 0.5*MAX((QT-QS),0.)
if (abs(QC-QCOLD)<Diff) exit
enddo
T=EXN*THL + xlv/cp*QC
QS=qsat_blend
(T,P)
QC=max(QT-QS,0.)
!Do not allow saturation below 100 m
if(zagl < 100.)QC=0.
!THV=(THL+xlv/cp*QC).*(1+(1-rvovrd)*(QT-QC)-QC);
THV=(THL+xlv/cp*QC)*(1.+QT*(rvovrd-1.)-rvovrd*QC)
!THIS BASICALLY GIVE THE SAME RESULT AS THE PREVIOUS LINE
!TH = THL + xlv/cp/EXN*QC
!THV= TH*(1. + 0.608*QT)
!print *,'t,p,qt,qs,qc'
!print *,t,p,qt,qs,qc
end subroutine condensation_edmf
!===============================================================
SUBROUTINE SCALE_AWARE(dx,PBL1,Psig_bl,Psig_shcu) 2
!---------------------------------------------------------------
! NOTES ON SCALE-AWARE FORMULATION
!
!JOE: add scale-aware factor (Psig) here, taken from Honnert et al. (2011,
! JAS) and/or from Hyeyum Hailey Shin and Song-You Hong (2013, JAS)
!
! Psig_bl tapers local mixing
! Psig_shcu tapers nonlocal mixing
REAL,INTENT(IN) :: dx,PBL1
REAL, INTENT(OUT) :: Psig_bl,Psig_shcu
REAL :: dxdh
Psig_bl=1.0
Psig_shcu=1.0
dxdh=MAX(dx,10.)/MIN(PBL1,3000.)
! Honnert et al. 2011, TKE in PBL *** original form used until 201605
!Psig_bl= ((dxdh**2) + 0.07*(dxdh**0.667))/((dxdh**2) + &
! (3./21.)*(dxdh**0.67) + (3./42.))
! Honnert et al. 2011, TKE in entrainment layer
!Psig_bl= ((dxdh**2) + (4./21.)*(dxdh**0.667))/((dxdh**2) + &
! (3./20.)*(dxdh**0.67) + (7./21.))
! New form to preseve parameterized mixing - only down 5% at dx = 750 m
Psig_bl= ((dxdh**2) + 0.106*(dxdh**0.667))/((dxdh**2) +0.066*(dxdh**0.667) + 0.071)
!assume a 500 m cloud depth for shallow-cu clods
dxdh=MAX(dx,10.)/MIN(PBL1+500.,3500.)
! Honnert et al. 2011, TKE in entrainment layer *** original form used until 201605
!Psig_shcu= ((dxdh**2) + (4./21.)*(dxdh**0.667))/((dxdh**2) + &
! (3./20.)*(dxdh**0.67) + (7./21.))
! Honnert et al. 2011, TKE in cumulus
!Psig(i)= ((dxdh**2) + 1.67*(dxdh**1.4))/((dxdh**2) +1.66*(dxdh**1.4) +
!0.2)
! Honnert et al. 2011, w'q' in PBL
!Psig(i)= 0.5 + 0.5*((dxdh**2) + 0.03*(dxdh**1.4) -
!(4./13.))/((dxdh**2) + 0.03*(dxdh**1.4) + (4./13.))
! Honnert et al. 2011, w'q' in cumulus
!Psig(i)= ((dxdh**2) - 0.07*(dxdh**1.4))/((dxdh**2) -0.07*(dxdh**1.4) +
!0.02)
! Honnert et al. 2011, q'q' in PBL
!Psig(i)= 0.5 + 0.5*((dxdh**2) + 0.25*(dxdh**0.667) -0.73)/((dxdh**2)
!-0.03*(dxdh**0.667) + 0.73)
! Honnert et al. 2011, q'q' in cumulus
!Psig(i)= ((dxdh**2) - 0.34*(dxdh**1.4))/((dxdh**2) - 0.35*(dxdh**1.4)
!+ 0.37)
! Hyeyum Hailey Shin and Song-You Hong 2013, TKE in PBL (same as Honnert's above)
!Psig_shcu= ((dxdh**2) + 0.070*(dxdh**0.667))/((dxdh**2)
!+0.142*(dxdh**0.667) + 0.071)
! Hyeyum Hailey Shin and Song-You Hong 2013, TKE in entrainment zone *** switch to this form 201605
Psig_shcu= ((dxdh**2) + 0.145*(dxdh**0.667))/((dxdh**2) +0.172*(dxdh**0.667) + 0.170)
! Hyeyum Hailey Shin and Song-You Hong 2013, w'theta' in PBL
!Psig(i)= 0.5 + 0.5*((dxdh**2) -0.098)/((dxdh**2) + 0.106)
! Hyeyum Hailey Shin and Song-You Hong 2013, w'theta' in entrainment zone
!Psig(i)= 0.5 + 0.5*((dxdh**2) - 0.112*(dxdh**0.25) -0.071)/((dxdh**2)
!+ 0.054*(dxdh**0.25) + 0.10)
!print*,"in shcu_gf; dx, dxdh, Psig(i)=",dx,dxdh,Psig(i)
!If(Psig(i) < 0.000001 .OR. Psig(i) > 0.99999999)print*,"in shcu_gf;
!dx, dxdh, Psig(i)=",dx,dxdh,Psig(i)
If(Psig_bl > 1.0) Psig_bl=1.0
If(Psig_bl < 0.0) Psig_bl=0.0
If(Psig_shcu > 1.0) Psig_shcu=1.0
If(Psig_shcu < 0.0) Psig_shcu=0.0
END SUBROUTINE SCALE_AWARE
! =====================================================================
FUNCTION esat_blend(t) 2
! JAYMES- added 22 Apr 2015
!
! This calculates saturation vapor pressure. Separate ice and liquid functions
! are used (identical to those in module_mp_thompson.F, v3.6). Then, the
! final returned value is a temperature-dependant "blend". Because the final
! value is "phase-aware", this formulation may be preferred for use throughout
! the module (replacing "svp").
IMPLICIT NONE
REAL, INTENT(IN):: t
REAL :: esat_blend,XC,ESL,ESI,chi
XC=MAX(-80.,t-273.16)
! For 253 < t < 273.16 K, the vapor pressures are "blended" as a function of temperature,
! using the approach of Chaboureau and Bechtold (2002), JAS, p. 2363. The resulting
! values are returned from the function.
IF (t .GE. 273.16) THEN
esat_blend = J0+XC*(J1+XC*(J2+XC*(J3+XC*(J4+XC*(J5+XC*(J6+XC*(J7+XC*J8)))))))
ELSE IF (t .LE. 253.) THEN
esat_blend = K0+XC*(K1+XC*(K2+XC*(K3+XC*(K4+XC*(K5+XC*(K6+XC*(K7+XC*K8)))))))
ELSE
ESL = J0+XC*(J1+XC*(J2+XC*(J3+XC*(J4+XC*(J5+XC*(J6+XC*(J7+XC*J8)))))))
ESI = K0+XC*(K1+XC*(K2+XC*(K3+XC*(K4+XC*(K5+XC*(K6+XC*(K7+XC*K8)))))))
chi = (273.16-t)/20.16
esat_blend = (1.-chi)*ESL + chi*ESI
END IF
END FUNCTION esat_blend
! ====================================================================
FUNCTION qsat_blend(t, P) 7
! JAYMES- this function extends function "esat" and returns a "blended"
! saturation mixing ratio.
IMPLICIT NONE
REAL, INTENT(IN):: t, P
REAL :: qsat_blend,XC,ESL,ESI,RSLF,RSIF,chi
XC=MAX(-80.,t-273.16)
IF (t .GE. 273.16) THEN
ESL = J0+XC*(J1+XC*(J2+XC*(J3+XC*(J4+XC*(J5+XC*(J6+XC*(J7+XC*J8)))))))
qsat_blend = 0.622*ESL/(P-ESL)
ELSE IF (t .LE. 253.) THEN
ESI = K0+XC*(K1+XC*(K2+XC*(K3+XC*(K4+XC*(K5+XC*(K6+XC*(K7+XC*K8)))))))
qsat_blend = 0.622*ESI/(P-ESI)
ELSE
ESL = J0+XC*(J1+XC*(J2+XC*(J3+XC*(J4+XC*(J5+XC*(J6+XC*(J7+XC*J8)))))))
ESI = K0+XC*(K1+XC*(K2+XC*(K3+XC*(K4+XC*(K5+XC*(K6+XC*(K7+XC*K8)))))))
RSLF = 0.622*ESL/(P-ESL)
RSIF = 0.622*ESI/(P-ESI)
chi = (273.16-t)/20.16
qsat_blend = (1.-chi)*RSLF + chi*RSIF
END IF
END FUNCTION qsat_blend
! ===================================================================
FUNCTION xl_blend(t) 3
! JAYMES- this function interpolates the latent heats of vaporization and
! sublimation into a single, temperature-dependant, "blended" value, following
! Chaboureau and Bechtold (2002), Appendix.
IMPLICIT NONE
REAL, INTENT(IN):: t
REAL :: xl_blend,xlvt,xlst,chi
IF (t .GE. 273.16) THEN
xl_blend = xlv + (cpv-cliq)*(t-273.16) !vaporization/condensation
ELSE IF (t .LE. 253.) THEN
xl_blend = xls + (cpv-cice)*(t-273.16) !sublimation/deposition
ELSE
xlvt = xlv + (cpv-cliq)*(t-273.16) !vaporization/condensation
xlst = xls + (cpv-cice)*(t-273.16) !sublimation/deposition
chi = (273.16-t)/20.16
xl_blend = (1.-chi)*xlvt + chi*xlst !blended
END IF
END FUNCTION xl_blend
! ===================================================================
! ===================================================================
! This is the mass flux part of the TEMF scheme from module_bl_temf.F,
! adapted for the MYNN context by Wayne Angevine June 2015.
! Variable strategy: TEMF external variables that have semantically
! comfortable counterparts in the MYNN-EDMF context have been changed to
! use those names. Otherwise the TEMF variable names have been kept but
! redefined as local variables. Only "moist" vars are used, whether
! updraft condenses or not. Some former local vars are replaced with
! externals.
!
! (Partial) list of conversions:
! wupd_temfx -> moist_w
! thup_temfx -> moist_thl
! qtup_temfx -> moist_qt
! qlup_temfx -> moist_qc
! cf3d_temfx -> cldfra_bl1d
! au -> moist_a
SUBROUTINE temf_mf( & 1,10
& kts,kte,dt,zw,p,pi1d, &
& u,v,w,th,thl,thv,qt,qv,qc,&
& qke,ust,flt,flq,flqv,flqc,&
& hfx,qfx,tsk, &
& pblh,rho,dfh,dx,znt,ep_2, &
! outputs - updraft properties
& edmf_a,edmf_w,edmf_qt, &
& edmf_thl,edmf_ent,edmf_qc,&
! outputs - variables needed for solver
& s_aw,s_awthl,s_awqt, &
& s_awqv,s_awqc, &
& s_awu,s_awv,s_awqke, &
#if (WRF_CHEM == 1)
& nchem,chem,s_awchem, &
#endif
! in/outputs - subgrid scale clouds
& qc_bl1d,cldfra_bl1d, &
! inputs - flags for moist arrays
&F_QC,F_QI,psig, &
&spp_pbl,rstoch_col, &
&ii,jj,ids,ide,jds,jde)
! Stochastic
INTEGER, INTENT(IN) :: spp_pbl
REAL, DIMENSION(kts:kte), INTENT(in) :: rstoch_col
! inputs:
INTEGER, INTENT(IN) :: kts,kte,ii,jj,ids,ide,jds,jde
REAL,DIMENSION(kts:kte), INTENT(IN) :: u,v,w,th,thl,qt,qv,qc,thv,p,pi1d
REAL,DIMENSION(kts:kte), INTENT(IN) :: qke
REAL,DIMENSION(kts:kte+1), INTENT(IN) :: zw !height at full-sigma
REAL,DIMENSION(kts:kte), INTENT(IN) :: rho !density
REAL,DIMENSION(kts:kte), INTENT(IN) :: dfh !diffusivity for heat
REAL, INTENT(IN) :: dt,ust,flt,flq,flqv,flqc,hfx,qfx,tsk,pblh,dx,znt,ep_2,psig
LOGICAL, OPTIONAL :: f_qc,f_qi
! outputs - updraft properties
REAL,DIMENSION(kts:kte), INTENT(OUT) :: &
& edmf_a,edmf_w,edmf_qt, &
& edmf_thl,edmf_ent,edmf_qc
! outputs - variables needed for solver
REAL,DIMENSION(kts:kte+1) :: s_aw, & !sum ai*wis_awphi
s_awthl, & !sum ai*wi*phii
s_awqt, &
s_awqv, &
s_awqc, &
s_awu, &
s_awv, &
s_awqke
#if (WRF_CHEM == 1)
INTEGER, INTENT(IN) :: nchem
REAL,DIMENSION(kts:kte+1, nchem) :: chem
REAL,DIMENSION(kts:kte+1, nchem) :: s_awchem
INTEGER :: ic
#endif
REAL,DIMENSION(kts:kte), INTENT(INOUT) :: qc_bl1d,cldfra_bl1d
! Local variables
!
! EDMF constants
real, parameter :: CM = 0.03 ! Proportionality constant for subcloud MF
real, parameter :: Cdelt = 0.006 ! Prefactor for detrainment rate
real, parameter :: Cw = 0.5 ! Prefactor for surface wUPD
real, parameter :: Cc = 3.0 ! Prefactor for convective length scale
real, parameter :: lasymp = 200.0 ! Asymptotic length scale WA 11/20/09
real, parameter :: hmax = 4000.0 ! Max hd,hct WA 11/20/09
integer, parameter :: Nupd = 8 ! Number of updrafts
!
integer :: i, k, kt, nu ! Loop variable
integer:: h0idx
real:: h0
real:: wstr, ang, wm
real, dimension( Nupd) :: hd,lcl,hct,ht
real:: convection_TKE_surface_src, sfcFTE
real:: sfcTHVF
real:: z0t
integer, dimension( Nupd) :: hdidx,lclidx,hctidx,htidx
integer:: hmax_idx
integer:: tval
real, dimension( kts:kte) :: zm, zt, dzm, dzt
real, dimension( kts:kte) :: thetal, qtot
real, dimension( kts:kte) :: u_temf, v_temf
real, dimension( kts:kte) :: rv, rl, rt
real, dimension( kts:kte) :: chi_poisson, gam
real, dimension( kts:kte) :: dthdz
real, dimension( kts:kte) :: lepsmin
real, dimension( kts:kte) :: thetav
real, dimension( kts:kte) :: dmoist_qtdz
real, dimension( kts:kte) :: B, Bmoist
real, dimension( kts:kte, Nupd) :: epsmf, deltmf, dMdz
real, dimension( kts:kte, Nupd) :: UUPD, VUPD
real, dimension( kts:kte, Nupd) :: thetavUPD, qlUPD, TEUPD
real, dimension( kts:kte, Nupd) :: thetavUPDmoist, wUPD_dry
real, dimension( kts:kte, Nupd) :: dthUPDdz, dwUPDdz
real, dimension( kts:kte, Nupd) :: dwUPDmoistdz
real, dimension( kts:kte, Nupd) :: dUUPDdz, dVUPDdz, dTEUPDdz
real, dimension( kts:kte, Nupd) :: TUPD, rstUPD, rUPD, rlUPD, qstUPD
real, dimension( kts:kte, Nupd) :: MUPD, wUPD, qtUPD, thlUPD, qcUPD
real, dimension( kts:kte, Nupd) :: aUPD, cldfraUPD, aUPDt
real, dimension( kts:kte) :: N2, S, Ri, beta, ftau, fth, ratio
real, dimension( kts:kte) :: TKE, TE2
real, dimension( kts:kte) :: ustrtilde, linv, leps
real, dimension( kts:kte) :: km, kh
real, dimension( kts:kte) :: Fz, QFK, uwk, vwk
real, dimension( kts:kte) :: km_conv, kh_conv, lconv
real, dimension( kts:kte) :: alpha2, beta2 ! For thetav flux calculation
real, dimension( kts:kte) :: THVF, buoy_src, srcs
real, dimension( kts:kte) :: beta1 ! For saturation humidity calculations
real, dimension( kts:kte) :: MFCth
real Cepsmf ! Prefactor for entrainment rate
real red_fact ! for reducing MF components
real, dimension( kts:kte) :: edmf_u, edmf_v, edmf_qke ! Same format as registry vars, but not passed out
integer:: bdy_dist,taper_dist
real:: taper
#if (WRF_CHEM == 1)
real,dimension( kts:kte+1, nchem, Nupd) :: chemUPD, dchemUPDdz
real,dimension( kts:kte+1, nchem) :: edmf_chem
#endif
! Used to be TEMF external variables, now local
real, dimension( kts:kte, Nupd) :: &
shf_temfx, qf_temfx, uw_temfx, vw_temfx , &
mf_temfx
real, dimension( Nupd) :: hd_temfx, lcl_temfx, hct_temfx, cfm_temfx
logical is_convective
! Vars for cloud fraction calculation
real, dimension( kts:kte) :: sigq, qst, satdef
real :: sigq2, rst, cldfra_sum, psig_w, maxw
!----------------------------------------------------------------------
! Grid staggering: Matlab version has mass and turbulence levels.
! WRF has full levels (with w) and half levels (u,v,theta,q*). Both
! sets of levels use the same indices (kts:kte). See pbl_driver or
! WRF Physics doc for (a few) details.
! So *mass levels correspond to half levels.*
! WRF full levels are ignored, we define our own turbulence levels
! in order to put the first one below the first half level.
! Another difference is that
! the Matlab version (and the Mauritsen et al. paper) consider the
! first mass level to be at z0 (effectively the surface). WRF considers
! the first half level to be above the effective surface. The first half
! level, at k=1, has nonzero values of u,v for example. Here we convert
! all incoming variables to internal ones with the correct indexing
! in order to make the code consistent with the Matlab version. We
! already had to do this for thetal and qt anyway, so the only additional
! overhead is for u and v.
! I use suffixes m for mass and t for turbulence as in Matlab for things
! like indices.
! Note that zsrf is the terrain height ASL, from Registry variable ht.
! Translations (Matlab to WRF):
! dzt -> calculated below
! dzm -> not supplied, calculated below
! k -> karman
! z0 -> znt
! z0t -> not in WRF, calculated below
! zt -> calculated below
! zm -> zw but NOTE zm(1) is now z0 (znt) and zm(2) is zw(1)
!
! Other notes:
! - I have often used 1 instead of kts below, because the scheme demands
! to know where the surface is. It won't work if kts .NE. 1.
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
WRITE ( mynn_message , FMT='(A)' ) &
' MYNN; in TEMF_MF, beginning'
CALL wrf_debug
( 0 , mynn_message )
ENDIF
!JOE-initialize s_aw* variables
s_aw = 0.
s_awthl= 0.
s_awqt = 0.
s_awqv = 0.
s_awqc = 0.
s_awu = 0.
s_awv = 0.
s_awqke= 0.
edmf_a = 0.
edmf_w = 0.
edmf_qt= 0. !qt
edmf_thl=0. !thl
edmf_ent=0.
edmf_qc= 0. !qc
edmf_u=0.
edmf_v=0.
edmf_qke=0.
z0t = znt
do k = kts,kte
rv(k) = qv(k) / (1.-qv(k)) ! Water vapor
rl(k) = qc(k) / (1.-qc(k)) ! Liquid water
rt(k) = qt(k) ! Total water (without ice)
thetal(k) = thl(k)
qtot(k) = qt(k)
thetav(k) = thv(k)
end do
do k = kts,kte
u_temf(k) = u(k)
v_temf(k) = v(k)
end do
!taper off MF scheme when significant resolved-scale motions are present
!This function needs to be asymetric...
k = 1
maxw = 0.0
DO WHILE (ZW(k) < pblh + 500.)
maxw = MAX(maxw,ABS(W(k)))
k = k+1
ENDDO
maxw = MAX(0.,maxw - 0.5) ! do nothing for small w, but
Psig_w = MAX(0.0, 1.0 - maxw/0.5) ! linearly taper off for w > 0.5 m/s
Psig_w = MIN(Psig_w, Psig)
!print*," maxw=", maxw," Psig_w=",Psig_w," Psig_shcu=",Psig_shcu
! Get delta height at half (mass) levels
zm(1) = znt
dzt(1) = zw(2) - zm(1)
! Get height and delta at turbulence levels
zt(1) = (zw(2) - znt) / 2.
do kt = kts+1,kte
zm(kt) = zw(kt) ! Convert indexing from WRF to TEMF
zt(kt) = (zm(kt) + zw(kt+1)) / 2.
dzm(kt) = zt(kt) - zt(kt-1)
dzt(kt) = zw(kt+1) - zw(kt)
end do
dzm(1) = dzm(2)
!print *,"In TEMF_MF zw = ", zw
!print *,"zm = ", zm
!print *,"zt = ", zt
!print *,"dzm = ", dzm
!print *,"dzt = ", dzt
! Gradients at first level
dthdz(1) = (thetal(2)-thetal(1)) / (zt(1) * log10(zm(2)/z0t))
!print *,"In TEMF_MF dthdz(1),thetal(2,1),tsk,zt(1),zm(2),z0t = ", &
! dthdz(1),thetal(2),thetal(1),tsk,zt(1),zm(2),z0t
! Surface thetaV flux from Stull p.147
sfcTHVF = hfx/(rho(1)*cp) * (1.+0.608*(qv(1)+qc(1))) + 0.608*thetav(1)*qfx
! WA use hd_temf to calculate w* instead of finding h0 here????
! Watch initialization!
h0idx = 1
h0 = zm(1)
lepsmin(kts) = 0.
! WA 2/11/13 find index just above hmax for use below
hmax_idx = kte-1
do k = kts+1,kte-1
lepsmin(k) = 0.
! Mean gradients
dthdz(k) = (thetal(k+1) - thetal(k)) / dzt(k)
! Find h0 (should eventually be interpolated for smoothness)
if (thetav(k) > thetav(1) .AND. h0idx .EQ. 1) then
! WA 9/28/11 limit h0 as for hd and hct
if (zm(k) < hmax) then
h0idx = k
h0 = zm(k)
else
h0idx = k
h0 = hmax
end if
end if
! WA 2/11/13 find index just above hmax for use below
if (zm(k) > hmax) then
hmax_idx = min(hmax_idx,k)
end if
end do
! Gradients at top level
dthdz(kte) = dthdz(kte-1)
if ( hfx > 0.) then
wstr = (g * h0 / thetav(2) * hfx/(rho(1)*cp) ) ** (1./3.)
bdy_dist = min( min((ii-ids),(ide-ii)) , min((jj-jds),(jde-jj)) )
taper_dist = 5
! JSK - linearly taper w-star near lateral boundaries (within 5 grid columns)
if (bdy_dist .LE. taper_dist) then
taper = max(0., min( 1., real(bdy_dist) / real(taper_dist) ) )
wstr = wstr * taper
end if
else
wstr = 0.
end if
!print *,"In TEMF_MF wstr,hfx,dthdz(1:2),h0 = ", wstr,hfx,dthdz(1),dthdz(2),h0
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
WRITE ( mynn_message , FMT='(A,F5.1,F6.1,F5.1,F5.1,F5.1)' ) &
' MYNN; in TEMF_MF: wstr,hfx,dtdz1,dtdz2,h0:', wstr,hfx,dthdz(1),dthdz(2),h0
CALL wrf_debug
( 0 , mynn_message )
ENDIF
! Set flag convective or not for use below
is_convective = wstr > 0. .AND. dthdz(1)<0. .AND. dthdz(2)<0.
! WA 12/16/09 require two levels of negative (unstable) gradient
!*** Mass flux block starts here ***
! WA WFIP 11/13/15 allow multiple updrafts, deterministic for now
if ( is_convective) then
!print *,"In TEMF_MF is_convective, wstr = ", wstr
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
WRITE ( mynn_message , FMT='(A)' ) &
' MYNN; in TEMF_MF: inconvective branch'
CALL wrf_debug
( 0 , mynn_message )
ENDIF
!Cepsmf = 2. / max(200.,h0)
Cepsmf = 1.0 / max(200.,h0) ! WA TEST reduce entrainment
! Cepsmf = max(Cepsmf,0.002)
! Cepsmf = max(Cepsmf,0.0015) ! WA TEST reduce max entrainment
! Cepsmf = max(Cepsmf,0.0005) ! WA TEST reduce min entrainment
Cepsmf = max(Cepsmf,0.0010) ! WA TEST reduce min entrainment
do nu = 1,Nupd
do k = kts,kte
! Calculate lateral entrainment fraction for subcloud layer
! epsilon and delta are defined on mass grid (half levels)
! epsmf(k,nu) = Cepsmf * (1+0.2*(floor(nu - Nupd/2.))) ! WA for three updrafts
! epsmf(k,nu) = Cepsmf * (1+0.05*(floor(nu - Nupd/2.))) ! WA for ten updrafts
! epsmf(k,nu) = Cepsmf * (1+0.0625*(floor(nu - Nupd/2.))) ! WA for eight updrafts
! epsmf(k,nu) = Cepsmf * (1+0.03*(floor(nu - Nupd/2.))) ! WA for eight updrafts, less spread
epsmf(k,nu) = Cepsmf * (1+0.25*(nu-1)) ! WA for eight updrafts, much more eps for some plumes, per Neggers 2015 fig. 15
end do
!print *,"In TEMF_MF Cepsmf, epsmf = ", Cepsmf, epsmf(1,:)
!IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
! WRITE ( mynn_message , FMT='(A,F8.4)' ) &
! ' MYNN; in TEMF_MF, Cepsmf, epsmf(1:13,nu)=', Cepsmf
! CALL wrf_debug ( 0 , mynn_message )
! print*," epsmf(1:13,nu)=",epsmf(1:13,nu)
!ENDIF
! Initialize updraft
thlUPD(1,nu) = thetal(1) + Cw*wstr
qtUPD(1,nu) = qtot(1) + 0.0*qfx/wstr
rUPD(1,nu) = qtUPD(1,nu) / (1. - qtUPD(1,nu))
wUPD(1,nu) = Cw * wstr
wUPD_dry(1,nu) = Cw * wstr
UUPD(1,nu) = u_temf(1)
VUPD(1,nu) = v_temf(1)
thetavUPD(1,nu) = thlUPD(1,nu) * (1. + 0.608*qtUPD(1,nu)) ! WA Assumes no liquid
thetavUPDmoist(1,nu) = thetavUPD(1,nu)
TEUPD(1,nu) = qke(1) + g / thetav(1) * sfcTHVF
qlUPD(1,nu) = qc(1) ! WA allow environment liquid
TUPD(1,nu) = thlUPD(1,nu) * pi1d(1)
!rstUPD(1,nu) = rsat_temf
(p(1),TUPD(1,nu),ep_2)
rstUPD(1,nu) = qsat_blend
(TUPD(1,nu),p(1)) ! get saturation water vapor mixing ratio at tl and p
rlUPD(1,nu) = 0.
#if (WRF_CHEM == 1)
do ic = 1,nchem
chemUPD(1,ic,nu) = chem(1,ic)
enddo
#endif
! Calculate updraft parameters counting up
do k = 2,kte
! WA 2/11/13 use hmax index to prevent oddness high up
if ( k < hmax_idx) then
dthUPDdz(k-1,nu) = -epsmf(k,nu) * (thlUPD(k-1,nu) - thetal(k-1))
thlUPD(k,nu) = thlUPD(k-1,nu) + dthUPDdz(k-1,nu) * dzm(k-1)
dmoist_qtdz(k-1) = -epsmf(k,nu) * (qtUPD(k-1,nu) - qtot(k-1))
qtUPD(k,nu) = qtUPD(k-1,nu) + dmoist_qtdz(k-1) * dzm(k-1)
thetavUPD(k,nu) = thlUPD(k,nu) * (1. + 0.608*qtUPD(k,nu)) ! WA Assumes no liquid
B(k-1) = g * (thetavUPD(k,nu) - thetav(k)) / thetav(k)
if ( wUPD_dry(k-1,nu) < 1e-15 ) then
wUPD_dry(k,nu) = 0.
else
dwUPDdz(k-1,nu) = -2. *epsmf(k,nu)*wUPD_dry(k-1,nu) + 0.33*B(k-1)/wUPD_dry(k-1,nu)
wUPD_dry(k,nu) = wUPD_dry(k-1,nu) + dwUPDdz(k-1,nu) * dzm(k-1)
end if
dUUPDdz(k-1,nu) = -epsmf(k,nu) * (UUPD(k-1,nu) - u_temf(k-1))
UUPD(k,nu) = UUPD(k-1,nu) + dUUPDdz(k-1,nu) * dzm(k-1)
dVUPDdz(k-1,nu) = -epsmf(k,nu) * (VUPD(k-1,nu) - v_temf(k-1))
VUPD(k,nu) = VUPD(k-1,nu) + dVUPDdz(k-1,nu) * dzm(k-1)
dTEUPDdz(k-1,nu) = -epsmf(k,nu) * (TEUPD(k-1,nu) - qke(k-1))
TEUPD(k,nu) = TEUPD(k-1,nu) + dTEUPDdz(k-1,nu) * dzm(k-1)
! Alternative updraft velocity based on moist thetav
! Need thetavUPDmoist, qlUPD
rUPD(k,nu) = qtUPD(k,nu) / (1. - qtUPD(k,nu))
! WA Updraft temperature assuming no liquid
TUPD(k,nu) = thlUPD(k,nu) * pi1d(k)
! Updraft saturation mixing ratio
!rstUPD(k,nu) = rsat_temf
(p(k-1),TUPD(k,nu),ep_2)
rstUPD(k,nu) = qsat_blend
(TUPD(k,nu),p(k-1))
! Correct to actual temperature (Sommeria & Deardorff 1977)
beta1(k) = 0.622 * (xlv/(r_d*TUPD(k,nu))) * (xlv/(cp*TUPD(k,nu)))
rstUPD(k,nu) = rstUPD(k,nu) * (1.0+beta1(k)*rUPD(k,nu)) / (1.0+beta1(k)*rstUPD(k,nu))
qstUPD(k,nu) = rstUPD(k,nu) / (1. + rstUPD(k,nu))
if (rUPD(k,nu) > rstUPD(k,nu)) then
rlUPD(k,nu) = rUPD(k,nu) - rstUPD(k,nu)
qlUPD(k,nu) = rlUPD(k,nu) / (1. + rlUPD(k,nu))
thetavUPDmoist(k,nu) = (thlUPD(k,nu) + ((xlv/cp)*qlUPD(k,nu)/pi1d(k))) * &
(1. + 0.608*qstUPD(k,nu) - qlUPD(k,nu))
else
rlUPD(k,nu) = 0.
qlUPD(k,nu) = qc(k-1) ! WA 4/6/10 allow environment liquid
thetavUPDmoist(k,nu) = thlUPD(k,nu) * (1. + 0.608*qtUPD(k,nu))
end if
Bmoist(k-1) = g * (thetavUPDmoist(k,nu) - thetav(k)) / thetav(k)
if ( wUPD(k-1,nu) < 1e-15 ) then
wUPD(k,nu) = 0.
else
dwUPDmoistdz(k-1,nu) = -2. *epsmf(k,nu)*wUPD(k-1,nu) + 0.33*Bmoist(k-1)/wUPD(k-1,nu)
wUPD(k,nu) = wUPD(k-1,nu) + dwUPDmoistdz(k-1,nu) * dzm(k-1)
end if
#if (WRF_CHEM == 1)
do ic = 1,nchem
dchemUPDdz(k-1,ic,nu) = -epsmf(k,nu) * (chemUPD(k-1,ic,nu) - chem(k-1,ic))
chemUPD(k,ic,nu) = chemUPD(k-1,ic,nu) + dchemUPDdz(k-1,ic,nu) * dzm(k-1)
enddo
#endif
else ! above hmax
thlUPD(k,nu) = thetal(k)
qtUPD(k,nu) = qtot(k)
wUPD_dry(k,nu) = 0.
UUPD(k,nu) = u_temf(k)
VUPD(k,nu) = v_temf(k)
TEUPD(k,nu) = qke(k)
qlUPD(k,nu) = qc(k-1)
wUPD(k,nu) = 0.
#if (WRF_CHEM == 1)
do ic = 1,nchem
chemUPD(k,ic,nu) = chem(k-1,ic)
enddo
#endif
end if
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
IF ( ABS(wUPD(k,nu))>10. ) THEN
WRITE ( mynn_message , FMT='(A,2I3)' ) &
' MYNN, in TEMF_MF, huge w at (nu,k):', nu,k
CALL wrf_debug
( 0 , mynn_message )
print *," thlUPD(1:k,nu) = ", thlUPD(1:k,nu)
print *," wUPD(1:k,nu) = ", wUPD(1:k,nu)
print *," Bmoist(1:k-1) = ", Bmoist(1:k-1)
print *," epsmf(1:k,nu) = ", epsmf(1:k,nu)
ENDIF
ENDIF
ENDDO !end-k
! Find hd based on wUPD
if (wUPD_dry(1,nu) == 0.) then
hdidx(nu) = 1
else
hdidx(nu) = kte ! In case wUPD <= 0 not found
do k = 2,kte
if (wUPD_dry(k,nu) <= 0. .OR. zm(k) > hmax) then
hdidx(nu) = k
! goto 100 ! FORTRAN made me do it!
exit
end if
end do
end if
100 hd(nu) = zm(hdidx(nu))
! Find LCL, hct, and ht
lclidx(nu) = kte ! In case LCL not found
do k = kts,kte
if ( k < hmax_idx .AND. rUPD(k,nu) > rstUPD(k,nu)) then
lclidx(nu) = k
! goto 200
exit
end if
end do
200 lcl(nu) = zm(lclidx(nu))
if (hd(nu) > lcl(nu)) then ! Forced cloud (at least) occurs
! Find hct based on wUPDmoist
if (wUPD(1,nu) == 0.) then
hctidx(nu) = 1
else
hctidx(nu) = kte ! In case wUPD <= 0 not found
do k = 2,kte
if (wUPD(k,nu) <= 0. .OR. zm(k) > hmax) then
hctidx(nu) = k
! goto 300 ! FORTRAN made me do it!
exit
end if
end do
end if
300 hct(nu) = zm(hctidx(nu))
if (hctidx(nu) <= hdidx(nu)+1) then ! No active cloud
hct(nu) = hd(nu)
hctidx(nu) = hdidx(nu)
else
end if
else ! No cloud
hct(nu) = hd(nu)
hctidx(nu) = hdidx(nu)
end if
ht(nu) = max(hd(nu),hct(nu))
htidx(nu) = max(hdidx(nu),hctidx(nu))
! Now truncate updraft at ht with taper
do k = 1,kte
if (zm(k) < 0.9*ht(nu)) then ! Below taper region
tval = 1
else if (zm(k) >= 0.9*ht(nu) .AND. zm(k) <= 1.0*ht(nu)) then
! Within taper region
tval = 1. - ((zm(k) - 0.9*ht(nu)) / (1.0*ht(nu) - 0.9*ht(nu)))
else ! Above taper region
tval = 0.
end if
thlUPD(k,nu) = tval * thlUPD(k,nu) + (1-tval)*thetal(k)
thetavUPD(k,nu) = tval * thetavUPD(k,nu) + (1-tval)*thetav(k)
qtUPD(k,nu) = tval * qtUPD(k,nu) + (1-tval) * qtot(k)
if (k > 1) then
qlUPD(k,nu) = tval * qlUPD(k,nu) + (1-tval) * qc(k-1)
end if
UUPD(k,nu) = tval * UUPD(k,nu) + (1-tval) * u_temf(k)
VUPD(k,nu) = tval * VUPD(k,nu) + (1-tval) * v_temf(k)
TEUPD(k,nu) = tval * TEUPD(k,nu) + (1-tval) * qke(k)
if (zm(k) > ht(nu)) then ! WA this is just for cleanliness
wUPD(k,nu) = 0.
dwUPDmoistdz(k,nu) = 0.
wUPD_dry(k,nu) = 0.
dwUPDdz(k,nu) = 0.
end if
#if (WRF_CHEM == 1)
do ic = 1,nchem
chemUPD(k,ic,nu) = tval * chemUPD(k,ic,nu) + (1-tval) * chem(k,ic)
enddo
#endif
end do
! Calculate lateral detrainment rate for cloud layer
! WA 8/5/15 constant detrainment
! deltmf(1,nu) = Cepsmf
! do k = 2,kte-1
! deltmf(k,nu) = deltmf(k-1,nu)
! end do
! deltmf(kte,nu) = Cepsmf
deltmf(:,nu) = epsmf(:,nu) ! WA TEST delt = eps everywhere
! Calculate mass flux (defined on turbulence levels)
mf_temfx(1,nu) = CM * wstr / Nupd
! WA 3/2/16 limit max MF for stability
! WA reduce the constant for improved numerical stability?
mf_temfx(1,nu) = min(mf_temfx(1,nu),0.2/Nupd)
do kt = 2,kte-1
dMdz(kt,nu) = (epsmf(kt,nu) - deltmf(kt,nu)) * mf_temfx(kt-1,nu) * dzt(kt)
mf_temfx(kt,nu) = mf_temfx(kt-1,nu) + dMdz(kt,nu)
! WA TEST 6/14/16 don't allow <0
mf_temfx(kt,nu) = max(mf_temfx(kt,nu),0.0)
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
IF ( mf_temfx(kt,nu)>=0.2/NUPD ) THEN
WRITE ( mynn_message , FMT='(A,2I3)' ) &
' MYNN, in TEMF_MF, huge MF at (nu,k):', nu,kt
CALL wrf_debug
( 0 , mynn_message )
print *," mf_temfx(1:kt,nu) = ", mf_temfx(1:kt,nu)
ENDIF
ENDIF
end do
mf_temfx(kte,nu) = 0.
! Calculate cloud fraction (on mass levels)
! WA eventually replace this with the same saturation calculation
! used in the MYNN code above for consistency.
! WA TEST 6/14/16 make sure aUPD(1) is reasonable
aUPD(1,nu) = 0.06 / Nupd
do k = 2,kte
! WA TEST 6/14/16 increase epsilon in test
! if (wUPD(k-1,nu) >= 1.0e-15 .AND. wUPD(k,nu) >= 1.0e-15) then
if (wUPD(k-1,nu) >= 1.0e-5 .AND. wUPD(k,nu) >= 1.0e-5) then
aUPD(k,nu) = ((mf_temfx(k-1,nu)+mf_temfx(k,nu))/2.0) / &
((wUPD(k-1,nu)+wUPD(k,nu))/2.0) ! WA average before divide, is that best?
else
aUPD(k,nu) = 0.0
end if
sigq2 = aUPD(k,nu) * (qtUPD(k,nu)-qtot(k))
if (sigq2 > 0.0) then
sigq(k) = sqrt(sigq2)
else
sigq(k) = 0.0
end if
!rst = rsat_temf(p(k-1),th(k-1)*pi1d(k-1),ep_2)
rst = qsat_blend
(th(k-1)*pi1d(k-1),p(k-1))
qst(k) = rst / (1. + rst)
satdef(k) = qtot(k) - qst(k)
if (satdef(k) <= 0.0) then
if (sigq(k) > 1.0e-15) then
cldfraUPD(k,nu) = max(0.5 + 0.36 * atan(1.55*(satdef(k)/sigq(k))),0.0) / Nupd
else
cldfraUPD(k,nu) = 0.0
end if
else
cldfraUPD(k,nu) = 1.0 / Nupd
end if
if (zm(k) < lcl(nu)) then
cldfraUPD(k,nu) = 0.0
end if
end do
end do ! loop over nu updrafts
! Add updraft areas into edmf_a, etc.
! Add cloud fractions into cldfra_bl1d
!cldfra_bl1d(1) = 0.0
cfm_temfx = 0.0
do k = 2,kte
!cldfra_bl1d(k) = 0.0
cldfra_sum = 0.0
edmf_a(k) = 0.0
edmf_w(k) = 0.0
edmf_thl(k) = 0.0
edmf_qt(k) = 0.0
edmf_qc(k) = 0.0
edmf_u(k) = 0.0
edmf_v(k) = 0.0
edmf_qke(k) = 0.0
edmf_ent(k) = 0.0
#if (WRF_CHEM == 1)
do ic = 1,nchem
edmf_chem(k,ic) = 0.0
enddo
#endif
do nu = 1,Nupd
! WA 7/5/16 put area on turbulence levels for consistency
aUPDt(k,nu) = mf_temfx(k,nu) / wUPD(k,nu)
if (aUPDt(k,nu) >= 1.0e-3 .AND. wUPD(k,nu) >= 1.0e-5) then
edmf_a(k) = edmf_a(k) + aUPDt(k,nu)
edmf_w(k) = edmf_w(k) + aUPDt(k,nu)*wUPD(k,nu)
edmf_thl(k) = edmf_thl(k) + aUPDt(k,nu)*thlUPD(k,nu)
edmf_qt(k) = edmf_qt(k) + aUPDt(k,nu)*qtUPD(k,nu)
edmf_qc(k) = edmf_qc(k) + aUPDt(k,nu)*qlUPD(k,nu)
edmf_u(k) = edmf_u(k) + aUPDt(k,nu)*UUPD(k,nu)
edmf_v(k) = edmf_v(k) + aUPDt(k,nu)*VUPD(k,nu)
edmf_qke(k) = edmf_qke(k) + aUPDt(k,nu)*TEUPD(k,nu)
edmf_ent(k) = edmf_ent(k) + aUPDt(k,nu)*epsmf(k,nu)
cldfra_sum = cldfra_sum + cldfraUPD(k,nu)
#if (WRF_CHEM == 1)
do ic = 1,nchem
edmf_chem(k,ic) = edmf_chem(k,ic) + aUPDt(k,nu)*chemUPD(k,ic,nu)
enddo
#endif
end if
end do
IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
! print *,"In TEMF_MF edmf_w = ", edmf_w(1:10)
! print *,"In TEMF_MF edmf_a = ", edmf_a(1:10)
! print *,"In TEMF_MF edmf_thl = ", edmf_thl(1:10)
! print *,"In TEMF_MF aUPD(2,:) = ", aUPD(2,:)
! print *,"In TEMF_MF wUPD(2,:) = ", wUPD(2,:)
! print *,"In TEMF_MF thlUPD(2,:) = ", thlUPD(2,:)
ENDIF
! WA TEST 6/14/16 don't divide by very small updrafts
!if (edmf_a(k)>0.) then
if (edmf_a(k)>1.e-3) then
edmf_w(k)=edmf_w(k)/edmf_a(k)
edmf_qt(k)=edmf_qt(k)/edmf_a(k)
edmf_thl(k)=edmf_thl(k)/edmf_a(k)
edmf_ent(k)=edmf_ent(k)/edmf_a(k)
edmf_qc(k)=edmf_qc(k)/edmf_a(k)
edmf_u(k)=edmf_u(k)/edmf_a(k)
edmf_v(k)=edmf_v(k)/edmf_a(k)
edmf_qke(k)=edmf_qke(k)/edmf_a(k)
#if (WRF_CHEM == 1)
do ic = 1,nchem
edmf_chem(k,ic) = edmf_chem(k,ic)/edmf_a(k)
enddo
#endif
if (edmf_qc(k) > 0.0) then
IF (cldfra_sum > edmf_a(k)) THEN
cldfra_bl1d(k) = cldfra_sum
qc_bl1d(k) = edmf_qc(k)*edmf_a(k)/cldfra_sum
ELSE
cldfra_bl1d(k)=edmf_a(k)
qc_bl1d(k) = edmf_qc(k)
ENDIF
endif
endif
! Put max value so far into cfm
if (zt(k) <= hmax) then
cfm_temfx = max(cldfra_bl1d(k),cfm_temfx)
end if
end do
!cldfra_bl1d(kte) = 0.0
! Computing variables needed for solver
do k=kts,kte ! do these in loop above
! WA TEST 6/14/16 don't use very small updrafts to be consistent
! with block above
if (edmf_a(k)>1.0e-3) then
s_aw(k) = edmf_a(k)*edmf_w(k)*psig_w * (1.0+rstoch_col(k))
s_awthl(k)= edmf_a(k)*edmf_w(k)*edmf_thl(k)*psig_w * (1.0+rstoch_col(k))
s_awqt(k) = edmf_a(k)*edmf_w(k)*edmf_qt(k)*psig_w * (1.0+rstoch_col(k))
s_awqc(k) = edmf_a(k)*edmf_w(k)*edmf_qc(k)*psig_w * (1.0+rstoch_col(k))
s_awqv(k) = s_awqt(k) - s_awqc(k)
s_awu(k) = edmf_a(k)*edmf_w(k)*edmf_u(k)*psig_w * (1.0+rstoch_col(k))
s_awv(k) = edmf_a(k)*edmf_w(k)*edmf_v(k)*psig_w * (1.0+rstoch_col(k))
s_awqke(k) = edmf_a(k)*edmf_w(k)*edmf_qke(k)*psig_w * (1.0+rstoch_col(k))
#if (WRF_CHEM == 1)
do ic = 1,nchem
s_awchem(k,ic) = edmf_w(k)*edmf_chem(k,ic)*psig_w * (1.0+rstoch_col(k))
enddo
#endif
endif
!now reduce diagnostic output array by psig
edmf_a(k)=edmf_a(k)*psig_w
enddo
! end if ! is_convective
! Mass flux block ends here
else
edmf_a = 0.
edmf_w = 0.
edmf_qt = 0.
edmf_thl = 0.
edmf_ent = 0.
edmf_u = 0.
edmf_v = 0.
edmf_qke = 0.
s_aw = 0.
s_awthl= 0.
s_awqt = 0.
s_awqv = 0.
s_awqc = 0.
s_awu = 0.
s_awv = 0.
s_awqke= 0.
edmf_qc(1) = qc(1)
!qc_bl1d(1) = qc(1)
do k = kts+1,kte-1
edmf_qc(k) = qc(k-1)
!qc_bl1d(k) = qc(k-1)
end do
#if (WRF_CHEM == 1)
do ic = 1,nchem
s_awchem(:,ic) = 0.
enddo
#endif
end if
!edmf_qc(kte) = qc(kte)
!qc_bl1d(kte) = qc(kte)
!IF ( wrf_at_debug_level(MYNN_DBG_LVL) ) THEN
! print *,"After TEMF_MF, s_aw = ", s_aw(1:5)
! print *,"After TEMF_MF, s_awthl = ", s_awthl(1:5)
! print *,"After TEMF_MF, s_awqt = ", s_awqt(1:5)
! print *,"After TEMF_MF, s_awqc = ", s_awqc(1:5)
! print *,"After TEMF_MF, s_awqv = ", s_awqv(1:5)
! print *,"After TEMF_MF, s_awu = ", s_awu(1:5)
! print *,"After TEMF_MF, s_awv = ", s_awv(1:5)
! print *,"After TEMF_MF, s_awqke = ", s_awqke(1:5)
!ENDIF
END SUBROUTINE temf_mf
!--------------------------------------------------------------------
!
real function rsat_temf(p,T,ep2) 2
! Calculates the saturation mixing ratio with respect to liquid water
! Arguments are pressure (Pa) and absolute temperature (K)
! Uses the formula from the ARM intercomparison setup.
! Converted from Matlab by WA 7/28/08
implicit none
real p, T, ep2
real temp, x
real, parameter :: c0 = 0.6105851e+3
real, parameter :: c1 = 0.4440316e+2
real, parameter :: c2 = 0.1430341e+1
real, parameter :: c3 = 0.2641412e-1
real, parameter :: c4 = 0.2995057e-3
real, parameter :: c5 = 0.2031998e-5
real, parameter :: c6 = 0.6936113e-8
real, parameter :: c7 = 0.2564861e-11
real, parameter :: c8 = -0.3704404e-13
temp = T - 273.15
x =c0+temp*(c1+temp*(c2+temp*(c3+temp*(c4+temp*(c5+temp*(c6+temp*(c7+temp*c8)))))))
rsat_temf = ep2*x/(p-x)
return
end function rsat_temf
!=================================================================
END MODULE module_bl_mynn