!WRF:model_layer:physics
!
!
!
!
!
!
!
module module_bl_ysu 2
contains
!
!
!-------------------------------------------------------------------------------
!
subroutine ysu(u3d,v3d,th3d,t3d,qv3d,qc3d,qi3d,p3d,p3di,pi3d, & 1,1
rublten,rvblten,rthblten, &
rqvblten,rqcblten,rqiblten,flag_qi, &
cp,g,rovcp,rd,rovg,ep1,ep2,karman,xlv,rv, &
dz8w,psfc, &
znu,znw,p_top, &
znt,ust,hpbl,psim,psih, &
xland,hfx,qfx,wspd,br, &
dt,kpbl2d, &
exch_h, &
wstar,delta, &
u10,v10, &
uoce,voce, &
rthraten,ysu_topdown_pblmix, &
ctopo,ctopo2, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
!optional
regime )
!-------------------------------------------------------------------------------
implicit none
!-------------------------------------------------------------------------------
!-- u3d 3d u-velocity interpolated to theta points (m/s)
!-- v3d 3d v-velocity interpolated to theta points (m/s)
!-- th3d 3d potential temperature (k)
!-- t3d temperature (k)
!-- qv3d 3d water vapor mixing ratio (kg/kg)
!-- qc3d 3d cloud mixing ratio (kg/kg)
!-- qi3d 3d ice mixing ratio (kg/kg)
! (note: if P_QI<PARAM_FIRST_SCALAR this should be zero filled)
!-- p3d 3d pressure (pa)
!-- p3di 3d pressure (pa) at interface level
!-- pi3d 3d exner function (dimensionless)
!-- rr3d 3d dry air density (kg/m^3)
!-- rublten u tendency due to
! pbl parameterization (m/s/s)
!-- rvblten v tendency due to
! pbl parameterization (m/s/s)
!-- rthblten theta tendency due to
! pbl parameterization (K/s)
!-- rqvblten qv tendency due to
! pbl parameterization (kg/kg/s)
!-- rqcblten qc tendency due to
! pbl parameterization (kg/kg/s)
!-- rqiblten qi tendency due to
! pbl parameterization (kg/kg/s)
!-- cp heat capacity at constant pressure for dry air (j/kg/k)
!-- g acceleration due to gravity (m/s^2)
!-- rovcp r/cp
!-- rd gas constant for dry air (j/kg/k)
!-- rovg r/g
!-- dz8w dz between full levels (m)
!-- xlv latent heat of vaporization (j/kg)
!-- rv gas constant for water vapor (j/kg/k)
!-- psfc pressure at the surface (pa)
!-- znt roughness length (m)
!-- ust u* in similarity theory (m/s)
!-- hpbl pbl height (m)
!-- psim similarity stability function for momentum
!-- psih similarity stability function for heat
!-- xland land mask (1 for land, 2 for water)
!-- hfx upward heat flux at the surface (w/m^2)
!-- qfx upward moisture flux at the surface (kg/m^2/s)
!-- wspd wind speed at lowest model level (m/s)
!-- u10 u-wind speed at 10 m (m/s)
!-- v10 v-wind speed at 10 m (m/s)
!-- uoce sea surface zonal currents (m s-1)
!-- voce sea surface meridional currents (m s-1)
!-- br bulk richardson number in surface layer
!-- dt time step (s)
!-- rvovrd r_v divided by r_d (dimensionless)
!-- ep1 constant for virtual temperature (r_v/r_d - 1)
!-- ep2 constant for specific humidity calculation
!-- karman von karman constant
!-- ids start index for i in domain
!-- ide end index for i in domain
!-- jds start index for j in domain
!-- jde end index for j in domain
!-- kds start index for k in domain
!-- kde end index for k in domain
!-- ims start index for i in memory
!-- ime end index for i in memory
!-- jms start index for j in memory
!-- jme end index for j in memory
!-- kms start index for k in memory
!-- kme end index for k in memory
!-- its start index for i in tile
!-- ite end index for i in tile
!-- jts start index for j in tile
!-- jte end index for j in tile
!-- kts start index for k in tile
!-- kte end index for k in tile
!-------------------------------------------------------------------------------
!
integer,parameter :: ndiff = 3
real,parameter :: rcl = 1.0
!
integer, intent(in ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte
integer, intent(in) :: ysu_topdown_pblmix
!
real, intent(in ) :: dt,cp,g,rovcp,rovg,rd,xlv,rv
!
real, intent(in ) :: ep1,ep2,karman
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(in ) :: qv3d, &
qc3d, &
qi3d, &
p3d, &
pi3d, &
th3d, &
t3d, &
dz8w, &
rthraten
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(in ) :: p3di
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(inout) :: rublten, &
rvblten, &
rthblten, &
rqvblten, &
rqcblten
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(inout) :: exch_h
real, dimension( ims:ime, jms:jme ) , &
intent(inout) :: wstar
real, dimension( ims:ime, jms:jme ) , &
intent(inout) :: delta
real, dimension( ims:ime, jms:jme ) , &
intent(inout) :: u10, &
v10
real, dimension( ims:ime, jms:jme ) , &
intent(in ) :: uoce, &
voce
!
real, dimension( ims:ime, jms:jme ) , &
intent(in ) :: xland, &
hfx, &
qfx, &
br, &
psfc
real, dimension( ims:ime, jms:jme ) , &
intent(in ) :: &
psim, &
psih
real, dimension( ims:ime, jms:jme ) , &
intent(inout) :: znt, &
ust, &
hpbl, &
wspd
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
intent(in ) :: u3d, &
v3d
!
integer, dimension( ims:ime, jms:jme ) , &
intent(out ) :: kpbl2d
logical, intent(in) :: flag_qi
!
!optional
!
real, dimension( ims:ime, jms:jme ) , &
optional , &
intent(inout) :: regime
!
real, dimension( ims:ime, kms:kme, jms:jme ) , &
optional , &
intent(inout) :: rqiblten
!
real, dimension( kms:kme ) , &
optional , &
intent(in ) :: znu, &
znw
!
!
real, optional, intent(in ) :: p_top
!
real, dimension( ims:ime, jms:jme ) , &
optional , &
intent(in ) :: ctopo, &
ctopo2
!local
integer :: i,j,k
real, dimension( its:ite, kts:kte*ndiff ) :: rqvbl2dt, &
qv2d
real, dimension( its:ite, kts:kte ) :: pdh
real, dimension( its:ite, kts:kte+1 ) :: pdhi
real, dimension( its:ite ) :: &
dusfc, &
dvsfc, &
dtsfc, &
dqsfc
!
qv2d(its:ite,:) = 0.0
!
do j = jts,jte
do k = kts,kte+1
do i = its,ite
if(k.le.kte)pdh(i,k) = p3d(i,k,j)
pdhi(i,k) = p3di(i,k,j)
enddo
enddo
do k = kts,kte
do i = its,ite
qv2d(i,k) = qv3d(i,k,j)
qv2d(i,k+kte) = qc3d(i,k,j)
if(present(rqiblten)) qv2d(i,k+kte+kte) = qi3d(i,k,j)
enddo
enddo
!
call ysu2d
(J=j,ux=u3d(ims,kms,j),vx=v3d(ims,kms,j) &
,tx=t3d(ims,kms,j) &
,qx=qv2d(its,kts) &
,p2d=pdh(its,kts),p2di=pdhi(its,kts) &
,pi2d=pi3d(ims,kms,j) &
,utnp=rublten(ims,kms,j),vtnp=rvblten(ims,kms,j) &
,ttnp=rthblten(ims,kms,j),qtnp=rqvbl2dt(its,kts),ndiff=ndiff &
,cp=cp,g=g,rovcp=rovcp,rd=rd,rovg=rovg &
,xlv=xlv,rv=rv &
,ep1=ep1,ep2=ep2,karman=karman &
,dz8w2d=dz8w(ims,kms,j) &
,psfcpa=psfc(ims,j),znt=znt(ims,j),ust=ust(ims,j) &
,hpbl=hpbl(ims,j) &
,regime=regime(ims,j),psim=psim(ims,j) &
,psih=psih(ims,j),xland=xland(ims,j) &
,hfx=hfx(ims,j),qfx=qfx(ims,j) &
,wspd=wspd(ims,j),br=br(ims,j) &
,dusfc=dusfc,dvsfc=dvsfc,dtsfc=dtsfc,dqsfc=dqsfc &
,dt=dt,rcl=1.0,kpbl1d=kpbl2d(ims,j) &
,exch_hx=exch_h(ims,kms,j) &
,wstar=wstar(ims,j) &
,delta=delta(ims,j) &
,u10=u10(ims,j),v10=v10(ims,j) &
,uox=uoce(ims,j),vox=voce(ims,j) &
,rthraten=rthraten(ims,kms,j),p2diORG=p3di(ims,kms,j) &
,ysu_topdown_pblmix=ysu_topdown_pblmix &
,ctopo=ctopo(ims,j),ctopo2=ctopo2(ims,j) &
,ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde &
,ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme &
,its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte )
!
do k = kts,kte
do i = its,ite
rthblten(i,k,j) = rthblten(i,k,j)/pi3d(i,k,j)
rqvblten(i,k,j) = rqvbl2dt(i,k)
rqcblten(i,k,j) = rqvbl2dt(i,k+kte)
if(present(rqiblten)) rqiblten(i,k,j) = rqvbl2dt(i,k+kte+kte)
enddo
enddo
!
enddo
!
end subroutine ysu
!
!-------------------------------------------------------------------------------
!
subroutine ysu2d(j,ux,vx,tx,qx,p2d,p2di,pi2d, & 1,4
utnp,vtnp,ttnp,qtnp,ndiff, &
cp,g,rovcp,rd,rovg,ep1,ep2,karman,xlv,rv, &
dz8w2d,psfcpa, &
znt,ust,hpbl,psim,psih, &
xland,hfx,qfx,wspd,br, &
dusfc,dvsfc,dtsfc,dqsfc, &
dt,rcl,kpbl1d, &
exch_hx, &
wstar,delta, &
u10,v10, &
uox,vox, &
rthraten,p2diORG, &
ysu_topdown_pblmix, &
ctopo,ctopo2, &
ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
!optional
regime )
!-------------------------------------------------------------------------------
implicit none
!-------------------------------------------------------------------------------
!
! this code is a revised vertical diffusion package ("ysupbl")
! with a nonlocal turbulent mixing in the pbl after "mrfpbl".
! the ysupbl (hong et al. 2006) is based on the study of noh
! et al.(2003) and accumulated realism of the behavior of the
! troen and mahrt (1986) concept implemented by hong and pan(1996).
! the major ingredient of the ysupbl is the inclusion of an explicit
! treatment of the entrainment processes at the entrainment layer.
! this routine uses an implicit approach for vertical flux
! divergence and does not require "miter" timesteps.
! it includes vertical diffusion in the stable atmosphere
! and moist vertical diffusion in clouds.
!
! mrfpbl:
! coded by song-you hong (ncep), implemented by jimy dudhia (ncar)
! fall 1996
!
! ysupbl:
! coded by song-you hong (yonsei university) and implemented by
! song-you hong (yonsei university) and jimy dudhia (ncar)
! summer 2002
!
! further modifications :
! an enhanced stable layer mixing, april 2008
! ==> increase pbl height when sfc is stable (hong 2010)
! pressure-level diffusion, april 2009
! ==> negligible differences
! implicit forcing for momentum with clean up, july 2009
! ==> prevents model blowup when sfc layer is too low
! incresea of lamda, maximum (30, 0.1 x del z) feb 2010
! ==> prevents model blowup when delz is extremely large
! revised prandtl number at surface, peggy lemone, feb 2010
! ==> increase kh, decrease mixing due to counter-gradient term
! revised thermal, shin et al. mon. wea. rev. , songyou hong, aug 2011
! ==> reduce the thermal strength when z1 < 0.1 h
! revised prandtl number for free convection, dudhia, mar 2012
! ==> pr0 = 1 + bke (=0.272) when neutral, kh is reduced
! minimum kzo = 0.01, lo = min (30m,delz), hong, mar 2012
! ==> weaker mixing when stable, and les resolution in vertical
! gz1oz0 is removed, and psim psih are ln(z1/z0)-psim,h, hong, mar 2012
! ==> consider thermal z0 when differs from mechanical z0
! a bug fix in wscale computation in stable bl, sukanta basu, jun 2012
! ==> wscale becomes small with height, and less mixing in stable bl
! revision in background diffusion (kzo), jan 2016
! ==> kzo = 0.1 for momentum and = 0.01 for mass to account for
! internal wave mixing of large et al. (1994), songyou hong, feb 2016
! ==> alleviate superious excessive mixing when delz is large
!
! references:
!
! hong (2010) quart. j. roy. met. soc
! hong, noh, and dudhia (2006), mon. wea. rev.
! hong and pan (1996), mon. wea. rev.
! noh, chun, hong, and raasch (2003), boundary layer met.
! troen and mahrt (1986), boundary layer met.
!
!-------------------------------------------------------------------------------
!
real,parameter :: xkzminm = 0.1,xkzminh = 0.01
real,parameter :: xkzmin = 0.01,xkzmax = 1000.,rimin = -100.
real,parameter :: rlam = 30.,prmin = 0.25,prmax = 4.
real,parameter :: brcr_ub = 0.0,brcr_sb = 0.25,cori = 1.e-4
real,parameter :: afac = 6.8,bfac = 6.8,pfac = 2.0,pfac_q = 2.0
real,parameter :: phifac = 8.,sfcfrac = 0.1
real,parameter :: d1 = 0.02, d2 = 0.05, d3 = 0.001
real,parameter :: h1 = 0.33333335, h2 = 0.6666667
real,parameter :: zfmin = 1.e-8,aphi5 = 5.,aphi16 = 16.
real,parameter :: tmin=1.e-2
real,parameter :: gamcrt = 3.,gamcrq = 2.e-3
real,parameter :: xka = 2.4e-5
integer,parameter :: imvdif = 1
!
integer, intent(in ) :: ids,ide, jds,jde, kds,kde, &
ims,ime, jms,jme, kms,kme, &
its,ite, jts,jte, kts,kte, &
j,ndiff
integer, intent(in) :: ysu_topdown_pblmix
!
real, intent(in ) :: dt,rcl,cp,g,rovcp,rovg,rd,xlv,rv
!
real, intent(in ) :: ep1,ep2,karman
!
real, dimension( ims:ime, kms:kme ), &
intent(in) :: dz8w2d, &
pi2d, &
p2diorg
!
real, dimension( ims:ime, kms:kme ) , &
intent(in ) :: tx
real, dimension( its:ite, kts:kte*ndiff ) , &
intent(in ) :: qx
!
real, dimension( ims:ime, kms:kme ) , &
intent(inout) :: utnp, &
vtnp, &
ttnp
real, dimension( its:ite, kts:kte*ndiff ) , &
intent(inout) :: qtnp
!
real, dimension( its:ite, kts:kte+1 ) , &
intent(in ) :: p2di
!
real, dimension( its:ite, kts:kte ) , &
intent(in ) :: p2d
!
real, dimension( ims:ime ) , &
intent(inout) :: ust, &
hpbl, &
znt
real, dimension( ims:ime ) , &
intent(in ) :: xland, &
hfx, &
qfx
!
real, dimension( ims:ime ), intent(inout) :: wspd
real, dimension( ims:ime ), intent(in ) :: br
!
real, dimension( ims:ime ), intent(in ) :: psim, &
psih
!
real, dimension( ims:ime ), intent(in ) :: psfcpa
integer, dimension( ims:ime ), intent(out ) :: kpbl1d
!
real, dimension( ims:ime, kms:kme ) , &
intent(in ) :: ux, &
vx, &
rthraten
real, dimension( ims:ime ) , &
optional , &
intent(in ) :: ctopo, &
ctopo2
real, dimension( ims:ime ) , &
optional , &
intent(inout) :: regime
!
! local vars
!
real, dimension( its:ite ) :: hol
real, dimension( its:ite, kts:kte+1 ) :: zq
!
real, dimension( its:ite, kts:kte ) :: &
thx,thvx,thlix, &
del, &
dza, &
dzq, &
xkzom, &
xkzoh, &
za
!
real, dimension( its:ite ) :: &
rhox, &
govrth, &
zl1,thermal, &
wscale, &
hgamt,hgamq, &
brdn,brup, &
phim,phih, &
dusfc,dvsfc, &
dtsfc,dqsfc, &
prpbl, &
wspd1,thermalli
!
real, dimension( its:ite, kts:kte ) :: xkzm,xkzh, &
f1,f2, &
r1,r2, &
ad,au, &
cu, &
al, &
xkzq, &
zfac, &
rhox2, &
hgamt2
!
!jdf added exch_hx
!
real, dimension( ims:ime, kms:kme ) , &
intent(inout) :: exch_hx
!
real, dimension( ims:ime ) , &
intent(inout) :: u10, &
v10
real, dimension( ims:ime ) , &
intent(in ) :: uox, &
vox
real, dimension( its:ite ) :: &
brcr, &
sflux, &
zol1, &
brcr_sbro
!
real, dimension( its:ite, kts:kte, ndiff) :: r3,f3
integer, dimension( its:ite ) :: kpbl,kpblold
!
logical, dimension( its:ite ) :: pblflg, &
sfcflg, &
stable, &
cloudflg
logical :: definebrup
!
integer :: n,i,k,l,ic,is,kk
integer :: klpbl, ktrace1, ktrace2, ktrace3
!
!
real :: dt2,rdt,spdk2,fm,fh,hol1,gamfac,vpert,prnum,prnum0
real :: ss,ri,qmean,tmean,alph,chi,zk,rl2,dk,sri
real :: brint,dtodsd,dtodsu,rdz,dsdzt,dsdzq,dsdz2,rlamdz
real :: utend,vtend,ttend,qtend
real :: dtstep,govrthv
real :: cont, conq, conw, conwrc
!
real, dimension( its:ite, kts:kte ) :: wscalek,wscalek2
real, dimension( ims:ime ) :: wstar
real, dimension( ims:ime ) :: delta
real, dimension( its:ite, kts:kte ) :: xkzml,xkzhl, &
zfacent,entfac
real, dimension( its:ite ) :: ust3, &
wstar3, &
wstar3_2, &
hgamu,hgamv, &
wm2, we, &
bfxpbl, &
hfxpbl,qfxpbl, &
ufxpbl,vfxpbl, &
dthvx
real :: prnumfac,bfx0,hfx0,qfx0,delb,dux,dvx, &
dsdzu,dsdzv,wm3,dthx,dqx,wspd10,ross,tem1,dsig,tvcon,conpr, &
prfac,prfac2,phim8z,radsum,tmp1,templ,rvls,temps,ent_eff, &
rcldb,bruptmp,radflux,vconvlim,vconvnew,fluxc,vconvc,vconv
!topo-corr
real, dimension( ims:ime, kms:kme ) :: fric, &
tke_ysu,&
el_ysu,&
shear_ysu,&
buoy_ysu
real, dimension( ims:ime ) :: pblh_ysu,&
vconvfx
!
!-------------------------------------------------------------------------------
!
klpbl = kte
!
cont=cp/g
conq=xlv/g
conw=1./g
conwrc = conw*sqrt(rcl)
conpr = bfac*karman*sfcfrac
!
! k-start index for tracer diffusion
!
ktrace1 = 0
ktrace2 = 0 + kte
ktrace3 = 0 + kte*2
!
do k = kts,kte
do i = its,ite
thx(i,k) = tx(i,k)/pi2d(i,k)
thlix(i,k) = (tx(i,k)-xlv*qx(i,ktrace2+k)/cp-2.834E6*qx(i,ktrace3+k)/cp)/pi2d(i,k)
enddo
enddo
!
do k = kts,kte
do i = its,ite
tvcon = (1.+ep1*qx(i,k))
thvx(i,k) = thx(i,k)*tvcon
enddo
enddo
!
do i = its,ite
tvcon = (1.+ep1*qx(i,1))
rhox(i) = psfcpa(i)/(rd*tx(i,1)*tvcon)
govrth(i) = g/thx(i,1)
enddo
!
!-----compute the height of full- and half-sigma levels above ground
! level, and the layer thicknesses.
!
do i = its,ite
zq(i,1) = 0.
enddo
!
do k = kts,kte
do i = its,ite
zq(i,k+1) = dz8w2d(i,k)+zq(i,k)
tvcon = (1.+ep1*qx(i,k))
rhox2(i,k) = p2d(i,k)/(rd*tx(i,k)*tvcon)
enddo
enddo
!
do k = kts,kte
do i = its,ite
za(i,k) = 0.5*(zq(i,k)+zq(i,k+1))
dzq(i,k) = zq(i,k+1)-zq(i,k)
del(i,k) = p2di(i,k)-p2di(i,k+1)
enddo
enddo
!
do i = its,ite
dza(i,1) = za(i,1)
enddo
!
do k = kts+1,kte
do i = its,ite
dza(i,k) = za(i,k)-za(i,k-1)
enddo
enddo
!
!
!-----initialize vertical tendencies and
!
utnp(its:ite,:) = 0.
vtnp(its:ite,:) = 0.
ttnp(its:ite,:) = 0.
qtnp(its:ite,:) = 0.
!
do i = its,ite
wspd1(i) = sqrt( (ux(i,1)-uox(i))*(ux(i,1)-uox(i)) + (vx(i,1)-vox(i))*(vx(i,1)-vox(i)) )+1.e-9
enddo
!
!---- compute vertical diffusion
!
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! compute preliminary variables
!
dtstep = dt
dt2 = 2.*dtstep
rdt = 1./dt2
!
do i = its,ite
bfxpbl(i) = 0.0
hfxpbl(i) = 0.0
qfxpbl(i) = 0.0
ufxpbl(i) = 0.0
vfxpbl(i) = 0.0
hgamu(i) = 0.0
hgamv(i) = 0.0
delta(i) = 0.0
wstar3_2(i) = 0.0
enddo
!
do k = kts,klpbl
do i = its,ite
wscalek(i,k) = 0.0
wscalek2(i,k) = 0.0
enddo
enddo
!
do k = kts,klpbl
do i = its,ite
zfac(i,k) = 0.0
enddo
enddo
do k = kts,klpbl-1
do i = its,ite
xkzom(i,k) = xkzminm
xkzoh(i,k) = xkzminh
enddo
enddo
!
do i = its,ite
dusfc(i) = 0.
dvsfc(i) = 0.
dtsfc(i) = 0.
dqsfc(i) = 0.
enddo
!
do i = its,ite
hgamt(i) = 0.
hgamq(i) = 0.
wscale(i) = 0.
kpbl(i) = 1
hpbl(i) = zq(i,1)
zl1(i) = za(i,1)
thermal(i)= thvx(i,1)
thermalli(i) = thlix(i,1)
pblflg(i) = .true.
sfcflg(i) = .true.
sflux(i) = hfx(i)/rhox(i)/cp + qfx(i)/rhox(i)*ep1*thx(i,1)
if(br(i).gt.0.0) sfcflg(i) = .false.
enddo
!
! compute the first guess of pbl height
!
do i = its,ite
stable(i) = .false.
brup(i) = br(i)
brcr(i) = brcr_ub
enddo
!
do k = 2,klpbl
do i = its,ite
if(.not.stable(i))then
brdn(i) = brup(i)
spdk2 = max(ux(i,k)**2+vx(i,k)**2,1.)
brup(i) = (thvx(i,k)-thermal(i))*(g*za(i,k)/thvx(i,1))/spdk2
kpbl(i) = k
stable(i) = brup(i).gt.brcr(i)
endif
enddo
enddo
!
do i = its,ite
k = kpbl(i)
if(brdn(i).ge.brcr(i))then
brint = 0.
elseif(brup(i).le.brcr(i))then
brint = 1.
else
brint = (brcr(i)-brdn(i))/(brup(i)-brdn(i))
endif
hpbl(i) = za(i,k-1)+brint*(za(i,k)-za(i,k-1))
if(hpbl(i).lt.zq(i,2)) kpbl(i) = 1
if(kpbl(i).le.1) pblflg(i) = .false.
enddo
!
do i = its,ite
fm = psim(i)
fh = psih(i)
zol1(i) = max(br(i)*fm*fm/fh,rimin)
if(sfcflg(i))then
zol1(i) = min(zol1(i),-zfmin)
else
zol1(i) = max(zol1(i),zfmin)
endif
hol1 = zol1(i)*hpbl(i)/zl1(i)*sfcfrac
if(sfcflg(i))then
phim(i) = (1.-aphi16*hol1)**(-1./4.)
phih(i) = (1.-aphi16*hol1)**(-1./2.)
bfx0 = max(sflux(i),0.)
hfx0 = max(hfx(i)/rhox(i)/cp,0.)
qfx0 = max(ep1*thx(i,1)*qfx(i)/rhox(i),0.)
wstar3(i) = (govrth(i)*bfx0*hpbl(i))
wstar(i) = (wstar3(i))**h1
else
phim(i) = (1.+aphi5*hol1)
phih(i) = phim(i)
wstar(i) = 0.
wstar3(i) = 0.
endif
ust3(i) = ust(i)**3.
wscale(i) = (ust3(i)+phifac*karman*wstar3(i)*0.5)**h1
wscale(i) = min(wscale(i),ust(i)*aphi16)
wscale(i) = max(wscale(i),ust(i)/aphi5)
enddo
!
! compute the surface variables for pbl height estimation
! under unstable conditions
!
do i = its,ite
if(sfcflg(i).and.sflux(i).gt.0.0)then
gamfac = bfac/rhox(i)/wscale(i)
hgamt(i) = min(gamfac*hfx(i)/cp,gamcrt)
hgamq(i) = min(gamfac*qfx(i),gamcrq)
vpert = (hgamt(i)+ep1*thx(i,1)*hgamq(i))/bfac*afac
thermal(i) = thermal(i)+max(vpert,0.)*min(za(i,1)/(sfcfrac*hpbl(i)),1.0)
thermalli(i)= thermalli(i)+max(vpert,0.)*min(za(i,1)/(sfcfrac*hpbl(i)),1.0)
hgamt(i) = max(hgamt(i),0.0)
hgamq(i) = max(hgamq(i),0.0)
brint = -15.9*ust(i)*ust(i)/wspd(i)*wstar3(i)/(wscale(i)**4.)
hgamu(i) = brint*ux(i,1)
hgamv(i) = brint*vx(i,1)
else
pblflg(i) = .false.
endif
enddo
!
! enhance the pbl height by considering the thermal
!
do i = its,ite
if(pblflg(i))then
kpbl(i) = 1
hpbl(i) = zq(i,1)
endif
enddo
!
do i = its,ite
if(pblflg(i))then
stable(i) = .false.
brup(i) = br(i)
brcr(i) = brcr_ub
endif
enddo
!
do k = 2,klpbl
do i = its,ite
if(.not.stable(i).and.pblflg(i))then
brdn(i) = brup(i)
spdk2 = max(ux(i,k)**2+vx(i,k)**2,1.)
brup(i) = (thvx(i,k)-thermal(i))*(g*za(i,k)/thvx(i,1))/spdk2
kpbl(i) = k
stable(i) = brup(i).gt.brcr(i)
endif
enddo
enddo
!
! enhance pbl by theta-li
!
if (ysu_topdown_pblmix.eq.1)then
do i = its,ite
kpblold(i) = kpbl(i)
definebrup=.false.
do k = kpblold(i), kte-1
spdk2 = max(ux(i,k)**2+vx(i,k)**2,1.)
bruptmp = (thlix(i,k)-thermalli(i))*(g*za(i,k)/thlix(i,1))/spdk2
stable(i) = bruptmp.ge.brcr(i)
if (definebrup) then
kpbl(i) = k
brup(i) = bruptmp
definebrup=.false.
endif
if (.not.stable(i)) then !overwrite brup brdn values
brdn(i)=bruptmp
definebrup=.true.
pblflg(i)=.true.
endif
enddo
enddo
endif
do i = its,ite
if(pblflg(i)) then
k = kpbl(i)
if(brdn(i).ge.brcr(i))then
brint = 0.
elseif(brup(i).le.brcr(i))then
brint = 1.
else
brint = (brcr(i)-brdn(i))/(brup(i)-brdn(i))
endif
hpbl(i) = za(i,k-1)+brint*(za(i,k)-za(i,k-1))
if(hpbl(i).lt.zq(i,2)) kpbl(i) = 1
if(kpbl(i).le.1) pblflg(i) = .false.
endif
enddo
!
! stable boundary layer
!
do i = its,ite
if((.not.sfcflg(i)).and.hpbl(i).lt.zq(i,2)) then
brup(i) = br(i)
stable(i) = .false.
else
stable(i) = .true.
endif
enddo
!
do i = its,ite
if((.not.stable(i)).and.((xland(i)-1.5).ge.0))then
wspd10 = u10(i)*u10(i) + v10(i)*v10(i)
wspd10 = sqrt(wspd10)
ross = wspd10 / (cori*znt(i))
brcr_sbro(i) = min(0.16*(1.e-7*ross)**(-0.18),.3)
endif
enddo
!
do i = its,ite
if(.not.stable(i))then
if((xland(i)-1.5).ge.0)then
brcr(i) = brcr_sbro(i)
else
brcr(i) = brcr_sb
endif
endif
enddo
!
do k = 2,klpbl
do i = its,ite
if(.not.stable(i))then
brdn(i) = brup(i)
spdk2 = max(ux(i,k)**2+vx(i,k)**2,1.)
brup(i) = (thvx(i,k)-thermal(i))*(g*za(i,k)/thvx(i,1))/spdk2
kpbl(i) = k
stable(i) = brup(i).gt.brcr(i)
endif
enddo
enddo
!
do i = its,ite
if((.not.sfcflg(i)).and.hpbl(i).lt.zq(i,2)) then
k = kpbl(i)
if(brdn(i).ge.brcr(i))then
brint = 0.
elseif(brup(i).le.brcr(i))then
brint = 1.
else
brint = (brcr(i)-brdn(i))/(brup(i)-brdn(i))
endif
hpbl(i) = za(i,k-1)+brint*(za(i,k)-za(i,k-1))
if(hpbl(i).lt.zq(i,2)) kpbl(i) = 1
if(kpbl(i).le.1) pblflg(i) = .false.
endif
enddo
!
! estimate the entrainment parameters
!
do i = its,ite
cloudflg(i)=.false.
if(pblflg(i)) then
k = kpbl(i) - 1
wm3 = wstar3(i) + 5. * ust3(i)
wm2(i) = wm3**h2
bfxpbl(i) = -0.15*thvx(i,1)/g*wm3/hpbl(i)
dthvx(i) = max(thvx(i,k+1)-thvx(i,k),tmin)
we(i) = max(bfxpbl(i)/dthvx(i),-sqrt(wm2(i)))
if((qx(i,ktrace2+k)+qx(i,ktrace3+k)).gt.0.01e-3.and.ysu_topdown_pblmix.eq.1)then
if ( kpbl(i) .ge. 2) then
cloudflg(i)=.true.
templ=thlix(i,k)*(p2di(i,k+1)/100000)**rovcp
!rvls is ws at full level
rvls=100.*6.112*EXP(17.67*(templ-273.16)/(templ-29.65))*(ep2/p2di(i,k+1))
temps=templ + ((qx(i,k)+qx(i,ktrace2+k))-rvls)/(cp/xlv + &
ep2*xlv*rvls/(rd*templ**2))
rvls=100.*6.112*EXP(17.67*(temps-273.15)/(temps-29.65))*(ep2/p2di(i,k+1))
rcldb=max((qx(i,k)+qx(i,ktrace2+k))-rvls,0.)
!entrainment efficiency
dthvx(i) = (thlix(i,k+2)+thx(i,k+2)*ep1*(qx(i,k+2)+qx(i,ktrace2+k+2))) &
- (thlix(i,k) + thx(i,k) *ep1*(qx(i,k) +qx(i,ktrace2+k)))
dthvx(i) = max(dthvx(i),0.1)
tmp1 = xlv/cp * rcldb/(pi2d(i,k)*dthvx(i))
ent_eff = 0.2 * 8. * tmp1 +0.2
radsum=0.
do kk = 1,kpbl(i)-1
radflux=rthraten(i,kk)*pi2d(i,kk) !converts theta/s to temp/s
radflux=radflux*cp/g*(p2diORG(i,kk)-p2diORG(i,kk+1)) ! converts temp/s to W/m^2
if (radflux < 0.0 ) radsum=abs(radflux)+radsum
enddo
radsum=max(radsum,0.0)
!recompute entrainment from sfc thermals
bfx0 = max(max(sflux(i),0.0)-radsum/rhox2(i,k)/cp,0.)
bfx0 = max(sflux(i),0.0)
wm3 = (govrth(i)*bfx0*hpbl(i))+5. * ust3(i)
wm2(i) = wm3**h2
bfxpbl(i) = -0.15*thvx(i,1)/g*wm3/hpbl(i)
dthvx(i) = max(thvx(i,k+1)-thvx(i,k),tmin)
we(i) = max(bfxpbl(i)/dthvx(i),-sqrt(wm2(i)))
!entrainment from PBL top thermals
bfx0 = max(radsum/rhox2(i,k)/cp-max(sflux(i),0.0),0.)
bfx0 = max(radsum/rhox2(i,k)/cp,0.)
wm3 = (g/thvx(i,k)*bfx0*hpbl(i)) ! this is wstar3(i)
wm2(i) = wm2(i)+wm3**h2
bfxpbl(i) = - ent_eff * bfx0
dthvx(i) = max(thvx(i,k+1)-thvx(i,k),0.1)
we(i) = we(i) + max(bfxpbl(i)/dthvx(i),-sqrt(wm3**h2))
!wstar3_2
bfx0 = max(radsum/rhox2(i,k)/cp,0.)
wstar3_2(i) = (g/thvx(i,k)*bfx0*hpbl(i))
!recompute hgamt
wscale(i) = (ust3(i)+phifac*karman*(wstar3(i)+wstar3_2(i))*0.5)**h1
wscale(i) = min(wscale(i),ust(i)*aphi16)
wscale(i) = max(wscale(i),ust(i)/aphi5)
gamfac = bfac/rhox(i)/wscale(i)
hgamt(i) = min(gamfac*hfx(i)/cp,gamcrt)
hgamq(i) = min(gamfac*qfx(i),gamcrq)
gamfac = bfac/rhox2(i,k)/wscale(i)
hgamt2(i,k) = min(gamfac*radsum/cp,gamcrt)
hgamt(i) = max(hgamt(i),0.0) + max(hgamt2(i,k),0.0)
brint = -15.9*ust(i)*ust(i)/wspd(i)*(wstar3(i)+wstar3_2(i))/(wscale(i)**4.)
hgamu(i) = brint*ux(i,1)
hgamv(i) = brint*vx(i,1)
endif
endif
prpbl(i) = 1.0
dthx = max(thx(i,k+1)-thx(i,k),tmin)
dqx = min(qx(i,k+1)-qx(i,k),0.0)
hfxpbl(i) = we(i)*dthx
qfxpbl(i) = we(i)*dqx
!
dux = ux(i,k+1)-ux(i,k)
dvx = vx(i,k+1)-vx(i,k)
if(dux.gt.tmin) then
ufxpbl(i) = max(prpbl(i)*we(i)*dux,-ust(i)*ust(i))
elseif(dux.lt.-tmin) then
ufxpbl(i) = min(prpbl(i)*we(i)*dux,ust(i)*ust(i))
else
ufxpbl(i) = 0.0
endif
if(dvx.gt.tmin) then
vfxpbl(i) = max(prpbl(i)*we(i)*dvx,-ust(i)*ust(i))
elseif(dvx.lt.-tmin) then
vfxpbl(i) = min(prpbl(i)*we(i)*dvx,ust(i)*ust(i))
else
vfxpbl(i) = 0.0
endif
delb = govrth(i)*d3*hpbl(i)
delta(i) = min(d1*hpbl(i) + d2*wm2(i)/delb,100.)
endif
enddo
!
do k = kts,klpbl
do i = its,ite
if(pblflg(i).and.k.ge.kpbl(i))then
entfac(i,k) = ((zq(i,k+1)-hpbl(i))/delta(i))**2.
else
entfac(i,k) = 1.e30
endif
enddo
enddo
!
! compute diffusion coefficients below pbl
!
do k = kts,klpbl
do i = its,ite
if(k.lt.kpbl(i)) then
zfac(i,k) = min(max((1.-(zq(i,k+1)-zl1(i))/(hpbl(i)-zl1(i))),zfmin),1.)
zfacent(i,k) = (1.-zfac(i,k))**3.
wscalek(i,k) = (ust3(i)+phifac*karman*wstar3(i)*(1.-zfac(i,k)))**h1
wscalek2(i,k) = (phifac*karman*wstar3_2(i)*(zfac(i,k)))**h1
if(sfcflg(i)) then
prfac = conpr
prfac2 = 15.9*(wstar3(i)+wstar3_2(i))/ust3(i)/(1.+4.*karman*(wstar3(i)+wstar3_2(i))/ust3(i))
prnumfac = -3.*(max(zq(i,k+1)-sfcfrac*hpbl(i),0.))**2./hpbl(i)**2.
else
prfac = 0.
prfac2 = 0.
prnumfac = 0.
phim8z = 1.+aphi5*zol1(i)*zq(i,k+1)/zl1(i)
wscalek(i,k) = ust(i)/phim8z
wscalek(i,k) = max(wscalek(i,k),0.001)
endif
prnum0 = (phih(i)/phim(i)+prfac)
prnum0 = max(min(prnum0,prmax),prmin)
xkzm(i,k) = wscalek(i,k) *karman* zq(i,k+1) * zfac(i,k)**pfac+ &
wscalek2(i,k)*karman*(hpbl(i)-zq(i,k+1))*(1-zfac(i,k))**pfac
!Do not include xkzm at kpbl-1 since it changes entrainment
if (k.eq.kpbl(i)-1.and.cloudflg(i).and.we(i).lt.0.0) then
xkzm(i,k) = 0.0
endif
prnum = 1. + (prnum0-1.)*exp(prnumfac)
xkzq(i,k) = xkzm(i,k)/prnum*zfac(i,k)**(pfac_q-pfac)
prnum0 = prnum0/(1.+prfac2*karman*sfcfrac)
prnum = 1. + (prnum0-1.)*exp(prnumfac)
xkzh(i,k) = xkzm(i,k)/prnum
xkzm(i,k) = xkzm(i,k)+xkzom(i,k)
xkzh(i,k) = xkzh(i,k)+xkzoh(i,k)
xkzq(i,k) = xkzq(i,k)+xkzoh(i,k)
xkzm(i,k) = min(xkzm(i,k),xkzmax)
xkzh(i,k) = min(xkzh(i,k),xkzmax)
xkzq(i,k) = min(xkzq(i,k),xkzmax)
endif
enddo
enddo
!
! compute diffusion coefficients over pbl (free atmosphere)
!
do k = kts,kte-1
do i = its,ite
if(k.ge.kpbl(i)) then
ss = ((ux(i,k+1)-ux(i,k))*(ux(i,k+1)-ux(i,k)) &
+(vx(i,k+1)-vx(i,k))*(vx(i,k+1)-vx(i,k))) &
/(dza(i,k+1)*dza(i,k+1))+1.e-9
govrthv = g/(0.5*(thvx(i,k+1)+thvx(i,k)))
ri = govrthv*(thvx(i,k+1)-thvx(i,k))/(ss*dza(i,k+1))
if(imvdif.eq.1.and.ndiff.ge.3)then
if((qx(i,ktrace2+k)+qx(i,ktrace3+k)).gt.0.01e-3.and.(qx(i &
,ktrace2+k+1)+qx(i,ktrace3+k+1)).gt.0.01e-3)then
! in cloud
qmean = 0.5*(qx(i,k)+qx(i,k+1))
tmean = 0.5*(tx(i,k)+tx(i,k+1))
alph = xlv*qmean/rd/tmean
chi = xlv*xlv*qmean/cp/rv/tmean/tmean
ri = (1.+alph)*(ri-g*g/ss/tmean/cp*((chi-alph)/(1.+chi)))
endif
endif
zk = karman*zq(i,k+1)
rlamdz = min(max(0.1*dza(i,k+1),rlam),300.)
rlamdz = min(dza(i,k+1),rlamdz)
rl2 = (zk*rlamdz/(rlamdz+zk))**2
dk = rl2*sqrt(ss)
if(ri.lt.0.)then
! unstable regime
ri = max(ri, rimin)
sri = sqrt(-ri)
xkzm(i,k) = dk*(1+8.*(-ri)/(1+1.746*sri))
xkzh(i,k) = dk*(1+8.*(-ri)/(1+1.286*sri))
else
! stable regime
xkzh(i,k) = dk/(1+5.*ri)**2
prnum = 1.0+2.1*ri
prnum = min(prnum,prmax)
xkzm(i,k) = xkzh(i,k)*prnum
endif
!
xkzm(i,k) = xkzm(i,k)+xkzom(i,k)
xkzh(i,k) = xkzh(i,k)+xkzoh(i,k)
xkzm(i,k) = min(xkzm(i,k),xkzmax)
xkzh(i,k) = min(xkzh(i,k),xkzmax)
xkzml(i,k) = xkzm(i,k)
xkzhl(i,k) = xkzh(i,k)
endif
enddo
enddo
!
! compute tridiagonal matrix elements for heat
!
do k = kts,kte
do i = its,ite
au(i,k) = 0.
al(i,k) = 0.
ad(i,k) = 0.
f1(i,k) = 0.
enddo
enddo
!
do i = its,ite
ad(i,1) = 1.
f1(i,1) = thx(i,1)-300.+hfx(i)/cont/del(i,1)*dt2
enddo
!
do k = kts,kte-1
do i = its,ite
dtodsd = dt2/del(i,k)
dtodsu = dt2/del(i,k+1)
dsig = p2d(i,k)-p2d(i,k+1)
rdz = 1./dza(i,k+1)
tem1 = dsig*xkzh(i,k)*rdz
if(pblflg(i).and.k.lt.kpbl(i)) then
dsdzt = tem1*(-hgamt(i)/hpbl(i)-hfxpbl(i)*zfacent(i,k)/xkzh(i,k))
f1(i,k) = f1(i,k)+dtodsd*dsdzt
f1(i,k+1) = thx(i,k+1)-300.-dtodsu*dsdzt
elseif(pblflg(i).and.k.ge.kpbl(i).and.entfac(i,k).lt.4.6) then
xkzh(i,k) = -we(i)*dza(i,kpbl(i))*exp(-entfac(i,k))
xkzh(i,k) = sqrt(xkzh(i,k)*xkzhl(i,k))
xkzh(i,k) = max(xkzh(i,k),xkzoh(i,k))
xkzh(i,k) = min(xkzh(i,k),xkzmax)
f1(i,k+1) = thx(i,k+1)-300.
else
f1(i,k+1) = thx(i,k+1)-300.
endif
tem1 = dsig*xkzh(i,k)*rdz
dsdz2 = tem1*rdz
au(i,k) = -dtodsd*dsdz2
al(i,k) = -dtodsu*dsdz2
ad(i,k) = ad(i,k)-au(i,k)
ad(i,k+1) = 1.-al(i,k)
exch_hx(i,k+1) = xkzh(i,k)
enddo
enddo
!
! copies here to avoid duplicate input args for tridin
!
do k = kts,kte
do i = its,ite
cu(i,k) = au(i,k)
r1(i,k) = f1(i,k)
enddo
enddo
!
call tridin_ysu
(al,ad,cu,r1,au,f1,its,ite,kts,kte,1)
!
! recover tendencies of heat
!
do k = kte,kts,-1
do i = its,ite
ttend = (f1(i,k)-thx(i,k)+300.)*rdt*pi2d(i,k)
ttnp(i,k) = ttnp(i,k)+ttend
dtsfc(i) = dtsfc(i)+ttend*cont*del(i,k)/pi2d(i,k)
enddo
enddo
!
! compute tridiagonal matrix elements for moisture, clouds, and gases
!
do k = kts,kte
do i = its,ite
au(i,k) = 0.
al(i,k) = 0.
ad(i,k) = 0.
enddo
enddo
!
do ic = 1,ndiff
do i = its,ite
do k = kts,kte
f3(i,k,ic) = 0.
enddo
enddo
enddo
!
do i = its,ite
ad(i,1) = 1.
f3(i,1,1) = qx(i,1)+qfx(i)*g/del(i,1)*dt2
enddo
!
if(ndiff.ge.2) then
do ic = 2,ndiff
is = (ic-1) * kte
do i = its,ite
f3(i,1,ic) = qx(i,1+is)
enddo
enddo
endif
!
do k = kts,kte-1
do i = its,ite
if(k.ge.kpbl(i)) then
xkzq(i,k) = xkzh(i,k)
endif
enddo
enddo
!
do k = kts,kte-1
do i = its,ite
dtodsd = dt2/del(i,k)
dtodsu = dt2/del(i,k+1)
dsig = p2d(i,k)-p2d(i,k+1)
rdz = 1./dza(i,k+1)
tem1 = dsig*xkzq(i,k)*rdz
if(pblflg(i).and.k.lt.kpbl(i)) then
dsdzq = tem1*(-qfxpbl(i)*zfacent(i,k)/xkzq(i,k))
f3(i,k,1) = f3(i,k,1)+dtodsd*dsdzq
f3(i,k+1,1) = qx(i,k+1)-dtodsu*dsdzq
elseif(pblflg(i).and.k.ge.kpbl(i).and.entfac(i,k).lt.4.6) then
xkzq(i,k) = -we(i)*dza(i,kpbl(i))*exp(-entfac(i,k))
xkzq(i,k) = sqrt(xkzq(i,k)*xkzhl(i,k))
xkzq(i,k) = max(xkzq(i,k),xkzoh(i,k))
xkzq(i,k) = min(xkzq(i,k),xkzmax)
f3(i,k+1,1) = qx(i,k+1)
else
f3(i,k+1,1) = qx(i,k+1)
endif
tem1 = dsig*xkzq(i,k)*rdz
dsdz2 = tem1*rdz
au(i,k) = -dtodsd*dsdz2
al(i,k) = -dtodsu*dsdz2
ad(i,k) = ad(i,k)-au(i,k)
ad(i,k+1) = 1.-al(i,k)
! exch_hx(i,k+1) = xkzh(i,k)
enddo
enddo
!
if(ndiff.ge.2) then
do ic = 2,ndiff
is = (ic-1) * kte
do k = kts,kte-1
do i = its,ite
f3(i,k+1,ic) = qx(i,k+1+is)
enddo
enddo
enddo
endif
!
! copies here to avoid duplicate input args for tridin
!
do k = kts,kte
do i = its,ite
cu(i,k) = au(i,k)
enddo
enddo
!
do ic = 1,ndiff
do k = kts,kte
do i = its,ite
r3(i,k,ic) = f3(i,k,ic)
enddo
enddo
enddo
!
! solve tridiagonal problem for moisture, clouds, and gases
!
call tridin_ysu
(al,ad,cu,r3,au,f3,its,ite,kts,kte,ndiff)
!
! recover tendencies of heat and moisture
!
do k = kte,kts,-1
do i = its,ite
qtend = (f3(i,k,1)-qx(i,k))*rdt
qtnp(i,k) = qtnp(i,k)+qtend
dqsfc(i) = dqsfc(i)+qtend*conq*del(i,k)
enddo
enddo
!
if(ndiff.ge.2) then
do ic = 2,ndiff
is = (ic-1) * kte
do k = kte,kts,-1
do i = its,ite
qtend = (f3(i,k,ic)-qx(i,k+is))*rdt
qtnp(i,k+is) = qtnp(i,k+is)+qtend
enddo
enddo
enddo
endif
!
! compute tridiagonal matrix elements for momentum
!
do i = its,ite
do k = kts,kte
au(i,k) = 0.
al(i,k) = 0.
ad(i,k) = 0.
f1(i,k) = 0.
f2(i,k) = 0.
enddo
enddo
!
! paj: ctopo=1 if topo_wind=0 (default)
!raquel---paj tke code (could be replaced with shin-hong tke in future
do i = its,ite
do k= kts, kte-1
shear_ysu(i,k)=xkzm(i,k)*((-hgamu(i)/hpbl(i)+(ux(i,k+1)-ux(i,k))/dza(i,k+1))*(ux(i,k+1)-ux(i,k))/dza(i,k+1) &
+ (-hgamv(i)/hpbl(i)+(vx(i,k+1)-vx(i,k))/dza(i,k+1))*(vx(i,k+1)-vx(i,k))/dza(i,k+1))
buoy_ysu(i,k)=xkzh(i,k)*g*(1.0/thx(i,k))*(-hgamt(i)/hpbl(i)+(thx(i,k+1)-thx(i,k))/dza(i,k+1))
zk = karman*zq(i,k+1)
!over pbl
if (k.ge.kpbl(i)) then
rlamdz = min(max(0.1*dza(i,k+1),rlam),300.)
rlamdz = min(dza(i,k+1),rlamdz)
else
!in pbl
rlamdz = 150.0
endif
el_ysu(i,k) = zk*rlamdz/(rlamdz+zk)
tke_ysu(i,k)=16.6*el_ysu(i,k)*(shear_ysu(i,k)-buoy_ysu(i,k))
!q2 when q3 positive
if(tke_ysu(i,k).le.0) then
tke_ysu(i,k)=0.0
else
tke_ysu(i,k)=(tke_ysu(i,k))**0.66
endif
enddo
!Hybrid pblh of MYNN
!tke is q2
CALL GET_PBLH
(KTS,KTE,pblh_ysu(i),thvx(i,kts:kte),&
& tke_ysu(i,kts:kte),zq(i,kts:kte+1),dzq(i,kts:kte),xland(i))
!--- end of paj tke
! compute vconv
! Use Beljaars over land
if (xland(i).lt.1.5) then
fluxc = max(sflux(i),0.0)
vconvc=1.
VCONV = vconvc*(g/thvx(i,1)*pblh_ysu(i)*fluxc)**.33
else
! for water there is no topo effect so vconv not needed
VCONV = 0.
endif
vconvfx(i) = vconv
!raquel
!ctopo stability correction
fric(i,1)=ust(i)**2/wspd1(i)*rhox(i)*g/del(i,1)*dt2 &
*(wspd1(i)/wspd(i))**2
if(present(ctopo)) then
vconvnew=0.9*vconvfx(i)+1.5*(max((pblh_ysu(i)-500)/1000.0,0.0))
vconvlim = min(vconvnew,1.0)
ad(i,1) = 1.+fric(i,1)*vconvlim+ctopo(i)*fric(i,1)*(1-vconvlim)
else
ad(i,1) = 1.+fric(i,1)
endif
f1(i,1) = ux(i,1)+uox(i)*ust(i)**2*rhox(i)*g/del(i,1)*dt2/wspd1(i)*(wspd1(i)/wspd(i))**2
f2(i,1) = vx(i,1)+vox(i)*ust(i)**2*rhox(i)*g/del(i,1)*dt2/wspd1(i)*(wspd1(i)/wspd(i))**2
enddo
!
do k = kts,kte-1
do i = its,ite
dtodsd = dt2/del(i,k)
dtodsu = dt2/del(i,k+1)
dsig = p2d(i,k)-p2d(i,k+1)
rdz = 1./dza(i,k+1)
tem1 = dsig*xkzm(i,k)*rdz
if(pblflg(i).and.k.lt.kpbl(i))then
dsdzu = tem1*(-hgamu(i)/hpbl(i)-ufxpbl(i)*zfacent(i,k)/xkzm(i,k))
dsdzv = tem1*(-hgamv(i)/hpbl(i)-vfxpbl(i)*zfacent(i,k)/xkzm(i,k))
f1(i,k) = f1(i,k)+dtodsd*dsdzu
f1(i,k+1) = ux(i,k+1)-dtodsu*dsdzu
f2(i,k) = f2(i,k)+dtodsd*dsdzv
f2(i,k+1) = vx(i,k+1)-dtodsu*dsdzv
elseif(pblflg(i).and.k.ge.kpbl(i).and.entfac(i,k).lt.4.6) then
xkzm(i,k) = prpbl(i)*xkzh(i,k)
xkzm(i,k) = sqrt(xkzm(i,k)*xkzml(i,k))
xkzm(i,k) = max(xkzm(i,k),xkzom(i,k))
xkzm(i,k) = min(xkzm(i,k),xkzmax)
f1(i,k+1) = ux(i,k+1)
f2(i,k+1) = vx(i,k+1)
else
f1(i,k+1) = ux(i,k+1)
f2(i,k+1) = vx(i,k+1)
endif
tem1 = dsig*xkzm(i,k)*rdz
dsdz2 = tem1*rdz
au(i,k) = -dtodsd*dsdz2
al(i,k) = -dtodsu*dsdz2
ad(i,k) = ad(i,k)-au(i,k)
ad(i,k+1) = 1.-al(i,k)
enddo
enddo
!
! copies here to avoid duplicate input args for tridin
!
do k = kts,kte
do i = its,ite
cu(i,k) = au(i,k)
r1(i,k) = f1(i,k)
r2(i,k) = f2(i,k)
enddo
enddo
!
! solve tridiagonal problem for momentum
!
call tridi1n
(al,ad,cu,r1,r2,au,f1,f2,its,ite,kts,kte,1)
!
! recover tendencies of momentum
!
do k = kte,kts,-1
do i = its,ite
utend = (f1(i,k)-ux(i,k))*rdt
vtend = (f2(i,k)-vx(i,k))*rdt
utnp(i,k) = utnp(i,k)+utend
vtnp(i,k) = vtnp(i,k)+vtend
dusfc(i) = dusfc(i) + utend*conwrc*del(i,k)
dvsfc(i) = dvsfc(i) + vtend*conwrc*del(i,k)
enddo
enddo
!
! paj: ctopo2=1 if topo_wind=0 (default)
!
do i = its,ite
if(present(ctopo).and.present(ctopo2)) then ! mchen for NMM
u10(i) = ctopo2(i)*u10(i)+(1-ctopo2(i))*ux(i,1)
v10(i) = ctopo2(i)*v10(i)+(1-ctopo2(i))*vx(i,1)
endif !mchen
enddo
!
!---- end of vertical diffusion
!
do i = its,ite
kpbl1d(i) = kpbl(i)
enddo
!
!
end subroutine ysu2d
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
subroutine tridi1n(cl,cm,cu,r1,r2,au,f1,f2,its,ite,kts,kte,nt) 2
!-------------------------------------------------------------------------------
implicit none
!-------------------------------------------------------------------------------
!
integer, intent(in ) :: its,ite, kts,kte, nt
!
real, dimension( its:ite, kts+1:kte+1 ) , &
intent(in ) :: cl
!
real, dimension( its:ite, kts:kte ) , &
intent(in ) :: cm, &
r1
real, dimension( its:ite, kts:kte,nt ) , &
intent(in ) :: r2
!
real, dimension( its:ite, kts:kte ) , &
intent(inout) :: au, &
cu, &
f1
real, dimension( its:ite, kts:kte,nt ) , &
intent(inout) :: f2
!
real :: fk
integer :: i,k,l,n,it
!
!-------------------------------------------------------------------------------
!
l = ite
n = kte
!
do i = its,l
fk = 1./cm(i,1)
au(i,1) = fk*cu(i,1)
f1(i,1) = fk*r1(i,1)
enddo
!
do it = 1,nt
do i = its,l
fk = 1./cm(i,1)
f2(i,1,it) = fk*r2(i,1,it)
enddo
enddo
!
do k = kts+1,n-1
do i = its,l
fk = 1./(cm(i,k)-cl(i,k)*au(i,k-1))
au(i,k) = fk*cu(i,k)
f1(i,k) = fk*(r1(i,k)-cl(i,k)*f1(i,k-1))
enddo
enddo
!
do it = 1,nt
do k = kts+1,n-1
do i = its,l
fk = 1./(cm(i,k)-cl(i,k)*au(i,k-1))
f2(i,k,it) = fk*(r2(i,k,it)-cl(i,k)*f2(i,k-1,it))
enddo
enddo
enddo
!
do i = its,l
fk = 1./(cm(i,n)-cl(i,n)*au(i,n-1))
f1(i,n) = fk*(r1(i,n)-cl(i,n)*f1(i,n-1))
enddo
!
do it = 1,nt
do i = its,l
fk = 1./(cm(i,n)-cl(i,n)*au(i,n-1))
f2(i,n,it) = fk*(r2(i,n,it)-cl(i,n)*f2(i,n-1,it))
enddo
enddo
!
do k = n-1,kts,-1
do i = its,l
f1(i,k) = f1(i,k)-au(i,k)*f1(i,k+1)
enddo
enddo
!
do it = 1,nt
do k = n-1,kts,-1
do i = its,l
f2(i,k,it) = f2(i,k,it)-au(i,k)*f2(i,k+1,it)
enddo
enddo
enddo
!
end subroutine tridi1n
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
subroutine tridin_ysu(cl,cm,cu,r2,au,f2,its,ite,kts,kte,nt) 4
!-------------------------------------------------------------------------------
implicit none
!-------------------------------------------------------------------------------
!
integer, intent(in ) :: its,ite, kts,kte, nt
!
real, dimension( its:ite, kts+1:kte+1 ) , &
intent(in ) :: cl
!
real, dimension( its:ite, kts:kte ) , &
intent(in ) :: cm
real, dimension( its:ite, kts:kte,nt ) , &
intent(in ) :: r2
!
real, dimension( its:ite, kts:kte ) , &
intent(inout) :: au, &
cu
real, dimension( its:ite, kts:kte,nt ) , &
intent(inout) :: f2
!
real :: fk
integer :: i,k,l,n,it
!
!-------------------------------------------------------------------------------
!
l = ite
n = kte
!
do it = 1,nt
do i = its,l
fk = 1./cm(i,1)
au(i,1) = fk*cu(i,1)
f2(i,1,it) = fk*r2(i,1,it)
enddo
enddo
!
do it = 1,nt
do k = kts+1,n-1
do i = its,l
fk = 1./(cm(i,k)-cl(i,k)*au(i,k-1))
au(i,k) = fk*cu(i,k)
f2(i,k,it) = fk*(r2(i,k,it)-cl(i,k)*f2(i,k-1,it))
enddo
enddo
enddo
!
do it = 1,nt
do i = its,l
fk = 1./(cm(i,n)-cl(i,n)*au(i,n-1))
f2(i,n,it) = fk*(r2(i,n,it)-cl(i,n)*f2(i,n-1,it))
enddo
enddo
!
do it = 1,nt
do k = n-1,kts,-1
do i = its,l
f2(i,k,it) = f2(i,k,it)-au(i,k)*f2(i,k+1,it)
enddo
enddo
enddo
!
end subroutine tridin_ysu
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
subroutine ysuinit(rublten,rvblten,rthblten,rqvblten, & 1
rqcblten,rqiblten,p_qi,p_first_scalar, &
restart, allowed_to_read, &
ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte )
!-------------------------------------------------------------------------------
implicit none
!-------------------------------------------------------------------------------
!
logical , intent(in) :: restart, allowed_to_read
integer , intent(in) :: ids, ide, jds, jde, kds, kde, &
ims, ime, jms, jme, kms, kme, &
its, ite, jts, jte, kts, kte
integer , intent(in) :: p_qi,p_first_scalar
real , dimension( ims:ime , kms:kme , jms:jme ), intent(out) :: &
rublten, &
rvblten, &
rthblten, &
rqvblten, &
rqcblten, &
rqiblten
integer :: i, j, k, itf, jtf, ktf
!
jtf = min0(jte,jde-1)
ktf = min0(kte,kde-1)
itf = min0(ite,ide-1)
!
if(.not.restart)then
do j = jts,jtf
do k = kts,ktf
do i = its,itf
rublten(i,k,j) = 0.
rvblten(i,k,j) = 0.
rthblten(i,k,j) = 0.
rqvblten(i,k,j) = 0.
rqcblten(i,k,j) = 0.
enddo
enddo
enddo
endif
!
if (p_qi .ge. p_first_scalar .and. .not.restart) then
do j = jts,jtf
do k = kts,ktf
do i = its,itf
rqiblten(i,k,j) = 0.
enddo
enddo
enddo
endif
!
end subroutine ysuinit
!-------------------------------------------------------------------------------
! ==================================================================
SUBROUTINE GET_PBLH(KTS,KTE,zi,thetav1D,qke1D,zw1D,dz1D,landsea) 3
! Copied from MYNN PBL
!---------------------------------------------------------------
! NOTES ON THE PBLH FORMULATION
!
!The 1.5-theta-increase method defines PBL heights as the level at
!which the potential temperature first exceeds the minimum potential
!temperature within the boundary layer by 1.5 K. When applied to
!observed temperatures, this method has been shown to produce PBL-
!height estimates that are unbiased relative to profiler-based
!estimates (Nielsen-Gammon et al. 2008). However, their study did not
!include LLJs. Banta and Pichugina (2008) show that a TKE-based
!threshold is a good estimate of the PBL height in LLJs. Therefore,
!a hybrid definition is implemented that uses both methods, weighting
!the TKE-method more during stable conditions (PBLH < 400 m).
!A variable tke threshold (TKEeps) is used since no hard-wired
!value could be found to work best in all conditions.
!---------------------------------------------------------------
INTEGER,INTENT(IN) :: KTS,KTE
REAL, INTENT(OUT) :: zi
REAL, INTENT(IN) :: landsea
REAL, DIMENSION(KTS:KTE), INTENT(IN) :: thetav1D, qke1D, dz1D
REAL, DIMENSION(KTS:KTE+1), INTENT(IN) :: zw1D
!LOCAL VARS
REAL :: PBLH_TKE,qtke,qtkem1,wt,maxqke,TKEeps,minthv
REAL :: delt_thv !delta theta-v; dependent on land/sea point
REAL, PARAMETER :: sbl_lim = 200. !Theta-v PBL lower limit of trust (m).
REAL, PARAMETER :: sbl_damp = 400. !Damping range for averaging with TKE-based PBLH (m).
INTEGER :: I,J,K,kthv,ktke
!FIND MAX TKE AND MIN THETAV IN THE LOWEST 500 M
k = kts+1
kthv = 1
ktke = 1
maxqke = 0.
minthv = 9.E9
DO WHILE (zw1D(k) .LE. 500.)
qtke =MAX(Qke1D(k),0.) ! maximum QKE
IF (maxqke < qtke) then
maxqke = qtke
ktke = k
ENDIF
IF (minthv > thetav1D(k)) then
minthv = thetav1D(k)
kthv = k
ENDIF
k = k+1
ENDDO
!TKEeps = maxtke/20. = maxqke/40.
TKEeps = maxqke/40.
TKEeps = MAX(TKEeps,0.025)
TKEeps = MIN(TKEeps,0.25)
!FIND THETAV-BASED PBLH (BEST FOR DAYTIME).
zi=0.
k = kthv+1
IF((landsea-1.5).GE.0)THEN
! WATER
delt_thv = 0.75
ELSE
! LAND
delt_thv = 1.5
ENDIF
zi=0.
k = kthv+1
DO WHILE (zi .EQ. 0.)
IF (thetav1D(k) .GE. (minthv + delt_thv))THEN
zi = zw1D(k) - dz1D(k-1)* &
& MIN((thetav1D(k)-(minthv + delt_thv))/MAX(thetav1D(k)-thetav1D(k-1),1E-6),1.0)
ENDIF
k = k+1
IF (k .EQ. kte-1) zi = zw1D(kts+1) !EXIT SAFEGUARD
ENDDO
!print*,"IN GET_PBLH:",thsfc,zi
!FOR STABLE BOUNDARY LAYERS, USE TKE METHOD TO COMPLEMENT THE
!THETAV-BASED DEFINITION (WHEN THE THETA-V BASED PBLH IS BELOW ~0.5 KM).
!THE TANH WEIGHTING FUNCTION WILL MAKE THE TKE-BASED DEFINITION NEGLIGIBLE
!WHEN THE THETA-V-BASED DEFINITION IS ABOVE ~1 KM.
!FIND TKE-BASED PBLH (BEST FOR NOCTURNAL/STABLE CONDITIONS).
PBLH_TKE=0.
k = ktke+1
DO WHILE (PBLH_TKE .EQ. 0.)
!QKE CAN BE NEGATIVE (IF CKmod == 0)... MAKE TKE NON-NEGATIVE.
qtke =MAX(Qke1D(k)/2.,0.) ! maximum TKE
qtkem1=MAX(Qke1D(k-1)/2.,0.)
IF (qtke .LE. TKEeps) THEN
PBLH_TKE = zw1D(k) - dz1D(k-1)* &
& MIN((TKEeps-qtke)/MAX(qtkem1-qtke, 1E-6), 1.0)
!IN CASE OF NEAR ZERO TKE, SET PBLH = LOWEST LEVEL.
PBLH_TKE = MAX(PBLH_TKE,zw1D(kts+1))
!print *,"PBLH_TKE:",i,j,PBLH_TKE, Qke1D(k)/2., zw1D(kts+1)
ENDIF
k = k+1
IF (k .EQ. kte-1) PBLH_TKE = zw1D(kts+1) !EXIT SAFEGUARD
ENDDO
!BLEND THE TWO PBLH TYPES HERE:
wt=.5*TANH((zi - sbl_lim)/sbl_damp) + .5
zi=PBLH_TKE*(1.-wt) + zi*wt
END SUBROUTINE GET_PBLH
! ==================================================================
end module module_bl_ysu
!-------------------------------------------------------------------------------